The staphylococcal accessory regulator locus (sarA) encodes a DNA-binding protein (SarA) that modulates expression of over 100 genes. Whether this occurs via a direct interaction between SarA and cis elements associated with its target genes is unclear, partly because the definitive characteristics of a SarA binding site have not been identified. In this work, electrophoretic mobility shift assays (EMSAs) were used to identify a SarA binding site(s) upstream of the SarA-regulated gene cna. The results suggest the existence of multiple high-affinity binding sites within the cna promoter region. Using a SELEX (systematic evolution of ligands by exponential enrichment) procedure and purified, recombinant SarA, we also selected DNA targets that contain a high-affinity SarA binding site from a random pool of DNA fragments. These fragments were subsequently cloned and sequenced. Randomly chosen clones were also examined by EMSA. These DNA fragments bound SarA with affinities comparable to those of recognized SarA-regulated genes, including cna, fnbA, and sspA. The composition of SarA-selected DNAs was AT rich, which is consistent with the nucleotide composition of the Staphylococcus aureus genome. Alignment of selected DNAs revealed a 7-bp consensus (ATTTTAT) that was present with no more than one mismatch in 46 of 56 sequenced clones. By using the same criteria, consensus binding sites were also identified upstream of the S. aureus genes spa, fnbA, sspA, agr, hla, and cna. With the exception of cna, which has not been previously examined, this 7-bp motif was within the putative SarA binding site previously associated with each gene.
SummaryStaphylococcus aureus produces a wide array of virulence factors and causes a correspondingly diverse array of infections. Production of these virulence factors is under the control of a complex network of global regulatory elements, one of which is sarA. sarA encodes a DNA binding protein that is considered to function as a transcription factor capable of acting as either a repressor or an activator. Using competitive ELISA assays, we demonstrate that SarA is present at approximately 50 000 copies per cell, which is not characteristic of classical transcription factors. We also demonstrate that SarA is present at all stages of growth in vitro and is capable of binding DNA with high affinity but that its binding affinity and pattern of shifted complexes in electrophoretic mobility shift assays is responsive to the redox state. We also show that SarA binds to the bacteriophage lambda (l) attachment site, attL, producing SarA-DNA complexes similar to intasomes, which consist of bacteriophage lambda integrase, Escherichia coli integration host factor and attL DNA. In addition, SarA stimulates intramolecular excision recombination in the absence of l excisionase, a DNA binding accessory protein.Taken together, these data suggest that SarA may function as an architectural accessory protein.
Abstractc-Jun is a major component of the AP-1 transcription factor and plays a key role in regulation of diverse biological processes including proliferation and apoptosis. Treatment of a wide variety of cells with the microtubule inhibitor vinblastine leads to a robust increase in c-Jun expression, JNKmediated c-Jun phosphorylation, and activation of AP-1-dependent transcription. However, the role of c-Jun induction in the response of cells to vinblastine remains obscure. In this study we used MCF7 breast cancer cell lines that express the dominant-negative form of c-Jun, TAM-67, as well as cells that overexpress c-Jun, under the control of an inducible promoter. Vinblastine induced c-Jun protein expression, c-Jun phosphorylation, and AP-1 activation in MCF7 cells, and these parameters were strongly inhibited by inducible TAM-67 expression and strongly enhanced by inducible c-Jun expression. Vinblastine-induced cell death was not affected by TAM-67 expression whereas cells were protected by c-Jun overexpression. Further investigation revealed that apoptotic and senescent cells were observed after vinblastine treatment and that both outcomes were strongly inhibited by cJun overexpression. Although c-Jun expression inhibited cell death, it did not affect the ability of vinblastine to induce mitotic arrest. These results indicate that c-Jun expression plays a protective role in the cellular response to vinblastine and operates post-mitotic block to inhibit drug-induced apoptosis and senescence.
The purpose of this study was to identify performance measures of racially underrepresented minority (RUM) Ph.D. trainees who needed additional training initiatives to assist with completing the UAMS biomedical science degree. A sample of 37 trainees in the 10-year NIH-NIGMS funded Initiative for Maximizing Student Development (IMSD) program at the University of Arkansas for Medical Sciences (UAMS) were examined. Descriptive statistics and correlations examined process measures (GRE scores, GPAs, etc.) and outcome measures (time-to-degree, publications, post-doctoral fellowship, etc.) While differences were found, there were no statistically significant differences between how these two groups (Historically Black Colleges and Universities (HBCUs) and Predominately White Institutions (PWIs)) of students performed over time as Ph.D. students. Graduates who scored lower on the verbal section of the GRE also had a higher final graduate school grade point average in graduates who received their undergraduate training from HBCUs. Of the graduates who received their undergraduate training from PWIs, graduates who scored lower on the quantitative section of the GRE had higher numbers of publications. These findings stimulate the need to 1) reduce reliance on the use of the GRE in admission committee decisions, 2) identify psychometrically valid indicators that tailored to assess outcome variables that are relevant to the careers of biomedical scientists, and 3) ensure the effective use of the tools in making admission decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.