Mass-selected complexes A-.C6FnH(6-n) (A = Cl, I, SF6; n = 0-5) were studied by infrared photodissociation spectroscopy and computational chemistry methods to investigate the interaction of negative ions and aromatic molecules, in which the charge distribution can be tuned by fluorination. Surprisingly, we find that, despite positive partial charges on the carbon atoms at high levels of fluorination, all anions under study prefer hydrogen bonding to the remaining H atoms in the ligand rather than binding to the positively charged ring. Moreover, bifurcated hydrogen bonds to two neighboring CH groups are energetically favored over linear hydrogen bonds to a single CH group.
The 351.1 nm photoelectron spectrum of the cyclopentadienide ion has been measured, which reveals the vibronic structure of the X (2)E(1) (") state of the cyclopentadienyl radical. Equation-of-motion ionization potential coupled-cluster (EOMIP-CCSD) calculations have been performed to construct a diabatic model potential of the X (2)E(1) (") state, which takes into account linear Jahn-Teller effects along the e(2) (') normal coordinates as well as bilinear Jahn-Teller effects along the e(2) (') and ring-breathing a(1) (') coordinates. A simulation based on this ab initio model potential reproduces the spectrum very well, identifying the vibronic levels with linear Jahn-Teller angular momentum quantum numbers of +/-1/2. The angular distributions of the photoelectrons for these vibronic levels are highly anisotropic with the photon energies used in the measurements. A few additional weak photoelectron peaks are observed when photoelectrons ejected parallel to the laser polarization are examined. These peaks correspond to the vibronic levels for out-of-plane modes in the ground X (2)E(1) (") state, which arise due to several pseudo-Jahn-Teller interactions with excited states of the radical and quadratic Jahn-Teller interaction in the X (2)E(1) (") state. A variant of the first derivative of the energy for the EOMIP-CCSD method has been utilized to evaluate the strength of these nonadiabatic couplings, which have subsequently been employed to construct the model potential of the X (2)E(1) (") state with respect to the out-of-plane normal coordinates. Simulations based on the model potential successfully reproduce the weak features that become conspicuous in the 0 degrees spectrum. The present study of the photoelectron spectrum complements a previous dispersed fluorescence spectroscopic study by Miller and co-workers [J. Chem. Phys. 114, 4855 (2001); 114, 4869 (2001)] to provide a detailed account of the vibronic structure of X (2)E(1) (") cyclopentadienyl. The electron affinity of the cyclopentadienyl radical is determined to be 1.808+/-0.006 eV. This electron affinity and the gas-phase acidity of cyclopentadiene have been combined in a negative ion thermochemical cycle to determine the C-H bond dissociation energy of cyclopentadiene; D(0)(C(5)H(6),C-H)=81.5+/-1.3 kcal mol(-1). The standard enthalpy of formation of the cyclopentadienyl radical has been determined to be Delta(f)H(298)(C(5)H(5))=63.2+/-1.4 kcal mol(-1).
If the binding energy of an excess electron is lower than some of the vibrational levels of its host anion, vibrational excitation can lead to autodetachment. We use excitation of CH stretching modes in nitroalkane anions (2700-3000 cm(-1)), where the excess electron is localized predominantly on the NO2 group. We present data on nitroalkane anions of various chain lengths, showing that this technique is a valid approach to the vibrational spectroscopy of such systems extending to nitroalkane anions at least the size of nitropentane. We compare spectra taken by using vibrational autodetachment with spectra obtained by monitoring Ar evaporation from Ar solvated nitroalkane anions. The spectra of nitromethane and nitroethane are assigned on the basis of ab initio calculations with a detailed analysis of Fermi resonances of CH stretching fundamentals with overtones and combination bands of HCH bending modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.