The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
Abstract:The resonant attachment of a free electron to a closed shell neutral molecule, and the interplay between the following electron detachment and electronic relaxation channels represents a fundamental but common process throughout chemical and biochemical systems. The new methodology of anion frequency-resolved photoelectron imaging is detailed and used to map-out molecular excited state dynamics of gas-phase para-benzoquinone, which is the electron accepting moiety in many biological electron-transfer chains. Three-dimensional spectra of excitation energy, electron kinetic energy and electron ejection anisotropy reveal clear fingerprints of excited and intermediate state dynamics. The results show that many of the excited states are strongly coupled, providing a route to forming the ground state radical anion, despite the fact that the electron is formally unbound in the excited states. The relation of our method to electron impact attachment studies and the key advantages, including the extension to time-resolved dynamics and to larger molecular systems is discussed.