The two major phospholipid classes, namely, phosphatidylethanolamines (PE) and phosphatidylcholines (PC), were studied in four different regions of human brain, i.e., in frontal gray matter, frontal white matter, hippocampus and in pons. The fatty acid (FA) compositions of these phospholipids were found to be specific for the different regions. PC contains mostly saturated and 18:1 FA, while PE is rich in polyunsaturated FA. Aging has no influence on the FA compositions, while in Alzheimer's disease (AD) PE is modified in all four regions, particularly in frontal gray matter and in hippocampus. The abundance of the major monounsaturated FA of PE, 18:1, is not significantly altered in Alzheimer's disease, but there is a substantial increase in the relative amounts of the saturated components 14:0, 16:0 and 18:0. This is paralleled by a decrease in the polyunsaturated FA 20:4, 22:4 and 22:6. It is not clear whether the changes observed are specific for AD. Changes in saturated/polyunsaturated FA ratio are likely to influence cellular function, which in turn may cause certain neural deficiencies. The findings do not support the hypothesis that AD reflects an accelerated aging process.
The neutral and phospholipid compositions of various regions of the human brain were analyzed using autopsy material covering the life period between 33 and 92 years of age. The protein content was also measured and, on a weight basis, this content is unchanged in the cerebellum, pons, and medulla oblongata, whereas in the 90-year-old group it decreases in the hippocampus, gray matter, and nucleus caudatus. In white matter, the protein content decreases continuously with age. The phospholipid composition is characteristic of the region investigated, but remains unchanged during aging. The total phospholipid content exhibits only a 5-10% decrease in the oldest age group. The content of dolichol and its polyisoprenoid pattern are also characteristic of the region analyzed. Between 33 and 92 years of age, the amount of dolichol in all portions of the brain increases three- to fourfold, but the isoprenoid pattern remains constant. The level of dolichyl-P varies between different regions, but only a moderate increase is seen with age. Ubiquinone content is highest in the nucleus caudatus, gray matter, and hippocampus, and in all areas this content is decreased to a great extent in the oldest age groups. All regions of the human brain are rich in cholesterol, but alterations in the amount of this lipid are highly variable during aging, ranging from no change to a 40% decrease.
Serious viral CNS infections during childhood appear to be associated with the later development of schizophrenia and nonaffective psychoses. The association with specific viruses suggests that the risk is related to infectious agents with a propensity to invade the brain parenchyma.
The flagellum protein flagellin of Listeria monocytogenes is encoded by the flaA gene. Immediately downstream of flaA, two genes, cheY and cheA, encoding products with homology to chemotaxis proteins of other bacteria, are located. In this study we constructed deletion mutants with mutations in flaA, cheY, and cheA to elucidate their role in the biology of infection with L. monocytogenes. The ⌬cheY, ⌬cheA, and double-mutant ⌬cheYA mutants, but not ⌬flaA mutant, were motile in liquid media. However, the ⌬cheA mutant had impaired swarming and the ⌬cheY and ⌬cheYA mutants were unable to swarm on soft agar plates, suggesting that cheY and cheA genes encode proteins involved in chemotaxis. The ⌬flaA, ⌬cheY, ⌬cheA, and ⌬cheYA mutants (grown at 24°C) showed reduced association with and invasion of Caco-2 cells compared to the wild-type strain. However, spleens from intragastrically infected BALB/c and C57BL/6 mice showed larger and similar numbers of the ⌬flaA and ⌬cheYA mutants, respectively, compared to the wild-type controls. Such a discrepancy could be explained by the fact that tumor necrosis factor receptor p55 deficient mice showed dramatically exacerbated susceptibility to the wild-type but unchanged or only slightly increased levels of the ⌬flaA or ⌬cheYA mutant. In summary, we show that listerial flaA, cheY, and cheA gene products facilitate the initial contact with epithelial cells and contribute to effective invasion but that flaA could also be involved in the triggering of immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.