The two major phospholipid classes, namely, phosphatidylethanolamines (PE) and phosphatidylcholines (PC), were studied in four different regions of human brain, i.e., in frontal gray matter, frontal white matter, hippocampus and in pons. The fatty acid (FA) compositions of these phospholipids were found to be specific for the different regions. PC contains mostly saturated and 18:1 FA, while PE is rich in polyunsaturated FA. Aging has no influence on the FA compositions, while in Alzheimer's disease (AD) PE is modified in all four regions, particularly in frontal gray matter and in hippocampus. The abundance of the major monounsaturated FA of PE, 18:1, is not significantly altered in Alzheimer's disease, but there is a substantial increase in the relative amounts of the saturated components 14:0, 16:0 and 18:0. This is paralleled by a decrease in the polyunsaturated FA 20:4, 22:4 and 22:6. It is not clear whether the changes observed are specific for AD. Changes in saturated/polyunsaturated FA ratio are likely to influence cellular function, which in turn may cause certain neural deficiencies. The findings do not support the hypothesis that AD reflects an accelerated aging process.
The neutral and phospholipid compositions of various regions of the human brain were analyzed using autopsy material covering the life period between 33 and 92 years of age. The protein content was also measured and, on a weight basis, this content is unchanged in the cerebellum, pons, and medulla oblongata, whereas in the 90-year-old group it decreases in the hippocampus, gray matter, and nucleus caudatus. In white matter, the protein content decreases continuously with age. The phospholipid composition is characteristic of the region investigated, but remains unchanged during aging. The total phospholipid content exhibits only a 5-10% decrease in the oldest age group. The content of dolichol and its polyisoprenoid pattern are also characteristic of the region analyzed. Between 33 and 92 years of age, the amount of dolichol in all portions of the brain increases three- to fourfold, but the isoprenoid pattern remains constant. The level of dolichyl-P varies between different regions, but only a moderate increase is seen with age. Ubiquinone content is highest in the nucleus caudatus, gray matter, and hippocampus, and in all areas this content is decreased to a great extent in the oldest age groups. All regions of the human brain are rich in cholesterol, but alterations in the amount of this lipid are highly variable during aging, ranging from no change to a 40% decrease.
The Oxford Classification of IgA nephropathy (IgAN) includes the following four histologic components: mesangial (M) and endocapillary (E) hypercellularity, segmental sclerosis (S) and interstitial fibrosis/tubular atrophy (T). These combine to form the MEST score and are independently associated with renal outcome. Current prediction and risk stratification in IgAN requires clinical data over 2 years of follow-up. Using modern prediction tools, we examined whether combining MEST with cross-sectional clinical data at biopsy provides earlier risk prediction in IgAN than current best methods that use 2 years of follow-up data. We used a cohort of 901 adults with IgAN from the Oxford derivation and North American validation studies and the VALIGA study followed for a median of 5.6 years to analyze the primary outcome (50% decrease in eGFR or ESRD) using Cox regression models. Covariates of clinical data at biopsy (eGFR, proteinuria, MAP) with or without MEST, and then 2-year clinical data alone (2-year average of proteinuria/MAP, eGFR at biopsy) were considered. There was significant improvement in prediction by adding MEST to clinical data at biopsy. The combination predicted the outcome as well as the 2-year clinical data alone, with comparable calibration curves. This effect did not change in subgroups treated or not with RAS blockade or immunosuppression. Thus, combining the MEST score with cross-sectional clinical data at biopsy provides earlier risk prediction in IgAN than our current best methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.