The physical structure of polymer films is important for understanding the observed macroscopic properties. In crystalline−crystalline block copolymers, the hierarchical nature of assembly is even more influential. Controlling this assembly process is crucial for tailoring film properties. In materials where crystallization of each block occurs nearly simultaneously, the ability to manipulate crystallization order is desirable. Poly-(ethylene oxide)-b-poly(ε-caprolactone) (PEO-b-PCL) films were monitored via ATR-FTIR to determine the crystallization order during drying from varying solvents. PCL crystallized first from most solvents except toluene and ethyl acetate, where PEO nucleation occurred first. Moreover, after melting the sample to remove solvent−polymer interaction effects, PCL was first to crystallize from the melt, as has been previously reported. Differences in the films' morphologies based on crystallization order were observed using polarized optical microscopy. These results demonstrate that the order of crystallization and the assembly within the film were controllable when casting symmetric diblock PEO-b-PCL films from different solvents.
The geometry of the polyhedra important in the structures of clathrate hydrates—the tetrakaidecahedron, the pentakaidecahedron, and the hexakaidecahedron—is considered. The fundamental lack of strict regularity is discussed and the extent of possible limited regularity is examined for each in turn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.