Bacterial leaf streak (BLS) of wheat, caused by Xanthomonas translucens pv. undulosa, has been a notable disease in Minnesota wheat fields over the past decade. Potential sources of the pathogen include infested seed and crop debris. Perennial weeds are also considered a possible inoculum source, but no surveys have been conducted to evaluate which X. translucens pathovars are present on weedy grasses that are common in Minnesota wheat fields. Multilocus sequence analysis (MLSA) of four housekeeping genes (rpoD, dnaK, fyuA, and gyrB) was used to identify 77 strains isolated from six weedy grass species, wheat, and barley in and around naturally infected wheat fields in Minnesota. The MLSA phylogeny identified all strains originating from weedy grass species, except smooth brome, as X. translucens pv. undulosa, whereas strains isolated from smooth brome were determined to be X. translucens pv. cerealis. In planta character states corroborated these identifications on a subset of 41 strains, as all strains from weedy grasses caused water-soaking on wheat and barley in greenhouse assays. Multilocus sequence typing (MLST) was used to evaluate genetic diversity and revealed that sequence types of X. translucens pv. undulosa originating from weedy grass hosts are similar to those found on wheat. This study identifies both annual and perennial poaceous weeds common in Minnesota that can harbor X. translucens pv. undulosa and expands our understanding of the diversity of the pathogen population.
Bacterial leaf streak, bacterial blight and black chaff caused by Xanthomonas translucens pathovars are major diseases affecting small grains. Xanthomonas translucens pv. translucens and X. translucens pv. undulosa are seedborne pathogens that cause similar symptoms on barley, but only X. translucens pv. undulosa causes bacterial leaf streak of wheat. Recent outbreaks of X. translucens have been a concern for wheat and barley growers in the Northern Great Plains; however, there are limited diagnostic tools for pathovar differentiation. We developed a multiplex PCR based on whole-genome differences to distinguish X. translucens pv. translucens and X. translucens pv. undulosa. We validated the primers across different Xanthomonas and non-Xanthomonas strains. To our knowledge, these are the first multiplex PCR to distinguish X. translucens pv. translucens and X. translucens pv. undulosa. These molecular tools will support disease management strategies enabling detection and pathovar incidence analysis of X. translucens.
Known by the indigenous peoples of the Great Lakes region of North America as Manoomin, wild rice (Zizania palustris) is a native aquatic grass that is honored and central to Anishinaabe culture. Cultivated wild rice, the domesticated form of this cereal bred primarily for resistance to shattering, is grown commercially in paddies. In this study we examined four isolates (CIX303, CIX306, Xt-8, and Xt-22) of Xanthomonas translucens, the causative agent of bacterial leaf streak (BLS) on cereals and weedy grasses, in molecular and host range studies to confirm the pathovar identity of strains associated with cultivated wild rice. Two of the strains examined (CIX303 and CIX306), were isolated from cultivated wild rice in 2016 as part of a survey of the pathogen in Minnesota (Ledman 2019). Xt-8 and Xt-22 are historical strains of X. translucens isolated from symptomatic wild rice leaves collected in Minnesota in the late 1970s that were reported at the time to be X. campestris pv. cerealis (Bowden and Percich 1982). A host range assay was repeated twice in the greenhouse, where two leaves of six seedlings each of hard red spring wheat (cv. RB07), spring barley (cv. Quest), spring rye (cv. Prolific), oat (cv. Ogle), quackgrass, smooth brome grass and cultivated wild rice (cv. Itasca Cycle-12) were inoculated via leaf infiltration (Curland et al. 2020). X. translucens pv. cerealis LMG 679PT, X. translucens pv. secalis LMG 883PT, X. translucens pv. translucens LMG 876T, and X. translucens pv. undulosa LMG 892PT were included as reference strains. Host response profiles were determined for each strain by recording character states five days post inoculation. Water-soaking and necrosis were considered pathogenic reactions, whereas chlorosis was not. Three pathotype strains, LMG 679PT, LMG 876T, and LMG 892PT, caused water-soaking in cultivated wild rice, whereas LMG 883PT caused chlorosis. All four strains from cultivated wild rice produced water-soaking on wheat, barley, quackgrass, and cultivated wild rice, chlorosis or water-soaking on rye, chlorosis on oat, and a reddish water-soaking on smooth brome. The character states generated by these four isolates were identical only to the host response profile for LMG 892PT. LMG 679PT differed, causing chlorosis on wheat, no symptoms on quackgrass, and water-soaking on smooth brome. A 2645 bp concatenation of housekeeping genes (rpoD, dnaK, fyuA, gyrB) was used to perform a Bayesian analysis (GenBank accessions MW528365-MW528384) (Curland et al. 2018, Curland et al. 2020, Young et al. 2008). Subsequent phylogenies grouped all four strains from cultivated wild rice with LMG 892PT and LMG 883PT. A pairwise comparison revealed 100% identity between Xt-22 and LMG 892PT. The percentage identity of CIX303, CIX308, and Xt-8 to LMG 892PT was 99.96, 99.96, and 99.92, respectively. In contrast, when compared to LMG 679PT, the four strains from cultivated wild rice had a percent identity between 97.43 and 97.50. Based on host range studies combined with MLSA, we identified recent and historical isolates from Z. palustris as X. translucens pv. undulosa. Pathovar identity of strains causing BLS on cultivated wild rice in Minnesota is crucial when screening breeding materials for disease resistance. Furthermore, given that X. translucens pv. undulosa has been prevalent on wheat in Minnesota (Curland et al. 2018), expanding knowledge of its host range to include cultivated wild rice may inform disease management practices for both crops. References: Bowden, R., and Percich, J. 1982. Phytopath. 73:640-645. Curland, R., et al. 2018. Phytopath. 108:443–453. Curland, R., et al. 2020. Phytopath. 110:257–266. Ledman, K. 2019. M.S. Thesis, Univ. of Minnesota, St. P. Paul, USA. Young, J., et al. 2008. Syst. Appl. Microbiol. 31:366–377.
Bacterial leaf streak (BLS) primarily affects barley and wheat and is mainly caused by the pathogens Xanthomonas translucens pv. translucens and X. translucens pv. undulosa, respectively. BLS is distributed globally and poses a risk to food security and the supply of malting barley. X. translucens pv. cerealis can infect both wheat and barley but is rarely isolated from these hosts in natural infections. These pathogens have undergone a confusing taxonomic history and the biology has been poorly understood making it difficult to develop effective control measures. Recent advancements in the ability and accessibility to sequence bacterial genomes have shed light on phylogenetic relationships between strains and identified genes that may play a role in virulence, such as those that encode Type III effectors. In addition, sources of resistance to BLS have been identified in barley and wheat lines and ongoing efforts are being made to map these genes and evaluate germplasm. While there are still gaps in BLS research, progress has been made in recent years to further understand epidemiology, diagnostics, pathogen virulence, and host resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.