Assembly of a family of 12 supramolecular compounds containing [AnOCl] (An = U, Np, Pu), via hydrogen and halogen bonds donated by substituted 4-X-pyridinium cations (X = H, Cl, Br, I), is reported. These materials were prepared from a room-temperature synthesis wherein crystallization of unhydrolyzed and valence-pure [An(VI)OCl] (An = U, Np, Pu) tectons is the norm. We present a hierarchy of assembly criteria based on crystallographic observations and subsequently quantify the strengths of the non-covalent interactions using Kohn-Sham density functional calculations. We provide, for the first time, a detailed description of the electrostatic potentials of the actinyl tetrahalide dianions and reconcile crystallographically observed structural motifs and non-covalent interaction acceptor-donor pairings. Our findings indicate that the average electrostatic potential across the halogen ligands (the acceptors) changes by only ∼2 kJ mol across the AnO series, indicating that the magnitude of the potential is independent of the metal center. The role of the cation is therefore critical in directing structural motifs and dictating the resulting hydrogen and halogen bond strengths, the former being stronger due to the positive charge centralized on the pyridyl nitrogen, N-H. Subsequent analyses using the quantum theory of atoms in molecules and natural bond orbital approaches support this conclusion and highlight the structure-directing role of the cations. Whereas one can infer that Columbic attraction is the driver for assembly, the contribution of the non-covalent interaction is to direct the molecular-level arrangement (or disposition) of the tectons.
Uranium concentrations as high as 2.94 × 10 parts per million (1.82 mol of U/1 kg of HO) occur in water containing nanoscale uranyl cage clusters. The anionic cage clusters, with diameters of 1.5-2.5 nm, are charge-balanced by encapsulated cations, as well as cations within their electrical double layer in solution. The concentration of uranium in these systems is impacted by the countercations (K, Li, Na), and molecular dynamics simulations have predicted their distributions in selected cases. Formation of uranyl cages prevents hydrolysis reactions that would result in formation of insoluble uranyl solids under alkaline conditions, and these spherical clusters reach concentrations that require close packing in solution.
The first neutron diffraction study of a single crystal containing uranyl peroxide nanoclusters is reported for pyrophosphate-functionalized Na44K6[(UO2)24(O2)24(P2O7)12][IO3]2·140H2O (1). Relative to earlier X-ray studies, neutron diffraction provides superior information concerning the positions of H atoms and lighter counterions. Hydrogen positions have been assigned and reveal an extensive network of H-bonds; notably, most O atoms present in the anionic cluster accept H-bonds from surrounding H2O molecules, and none of the surface-bound O atoms are protonated. The D4h symmetry of the cage is consistent with the presence of six encapsulated K cations, which appear to stabilize the lower symmetry variant of this cluster. (31)P NMR measurements demonstrate retention of this symmetry in solution, while in situ (31)P NMR studies suggest an acid-catalyzed mechanism for the assembly of 1 across a wide range of pH values.
A class of uranyl peroxide clusters was discovered before as nanometer-sized ions that form spontaneously in aqueous solutions. The uranyl(VI) cluster investigated here is approximately 2 nm in diameter, contains 24 uranyl moieties, and 12 pyrophosphate units. NMR spectroscopy shows that the ion has two distinct forms that interconvert in milliseconds to seconds depending on the temperature and the size of the counterions. P blue, O red, U yellow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.