Recent accidents resulting in worker injury and radioactive contamination occurred due to pressurization of uranium yellowcake drums produced in the western U.S.A. The drums contained an X-ray amorphous reactive form of uranium oxide that may have contributed to the pressurization. Heating hydrated uranyl peroxides produced during in situ mining can produce an amorphous compound, as shown by X-ray powder diffraction of material from impacted drums. Subsequently, studtite, [(UO2)(O2)(H2O)2](H2O)2, was heated in the laboratory. Its thermal decomposition produced a hygroscopic anhydrous uranyl peroxide that reacts with water to release O2 gas and form metaschoepite, a uranyl-oxide hydrate. Quantum chemical calculations indicate that the most stable U2O7 conformer consists of two bent (UO2)(2+) uranyl ions bridged by a peroxide group bidentate and parallel to each uranyl ion, and a μ2-O atom, resulting in charge neutrality. A pair distribution function from neutron total scattering supports this structural model, as do (1)H- and (17)O-nuclear magnetic resonance spectra. The reactivity of U2O7 in water and with water in air is higher than that of other uranium oxides, and this can be both hazardous and potentially advantageous in the nuclear fuel cycle.
The first neutron diffraction study of a single crystal containing uranyl peroxide nanoclusters is reported for pyrophosphate-functionalized Na44K6[(UO2)24(O2)24(P2O7)12][IO3]2·140H2O (1). Relative to earlier X-ray studies, neutron diffraction provides superior information concerning the positions of H atoms and lighter counterions. Hydrogen positions have been assigned and reveal an extensive network of H-bonds; notably, most O atoms present in the anionic cluster accept H-bonds from surrounding H2O molecules, and none of the surface-bound O atoms are protonated. The D4h symmetry of the cage is consistent with the presence of six encapsulated K cations, which appear to stabilize the lower symmetry variant of this cluster. (31)P NMR measurements demonstrate retention of this symmetry in solution, while in situ (31)P NMR studies suggest an acid-catalyzed mechanism for the assembly of 1 across a wide range of pH values.
The newly discovered mineral ewingite is the most structurally complex mineral known. Ewingite is found in the abandoned Plavno mine in the Jáchymov ore district, western Bohemia (Czech Republic), and was studied by synchrotron X-ray diffraction. The structure of ewingite contains nanometer-scale anionic uranyl carbonate cages that contain 24 uranyl polyhedra, as well as Ca and Mg cations and H 2 O groups located in interstitial regions inside and between the cages. The discovery of ewingite suggests that nanoscale uranyl carbonate cages could be aqueous species in some systems, and these may affect the geochemical behavior of uranium.
Single-crystal time-of-flight neutron diffraction has provided atomic resolution of H atoms of HO molecules and hydroxyl groups, as well as Li cations in the uranyl peroxide nanocluster U. Solid-state magic-angle-spinning nuclear magnetic resonance (MAS NMR) spectroscopy was used to confirm the dynamics of these constituents, revealing the transportation of Li atoms and HO through cluster walls. H atoms of hydroxyl units that are located on the cluster surface are involved in the transfer of HO and Li cations from inside to outside and vice versa. This exchange occurs as a concerted motion and happens rapidly even in the solid state. As a consequence of its large size and open hexagonal pores, U exchanges Li cations more rapidly compared to other uranyl nanoclusters.
Two copper-uranium heterometallic compounds, [(UO2)3Cu(II)O2(C6NO2)5] (1) and [(UO2)Cu(I)(C6NO2)3] (2), have been synthesized by the reaction of uranyl acetate with copper salts in the presence of isonicotinic acid. Both compounds have been characterized by single-crystal X-ray diffraction, IR, Raman, and UV-vis spectroscopy. In compound 1, interactions between copper and uranium centers occur and result in a three-dimensional pillar layered structure. Compound 1 is also the first example of a heterometallic uranyl organic framework with a trinuclear U3O18 building block. Compound 2 is the first uranyl organic framework that contains monovalent copper, which arises from the reaction of Cu(II) chloride and is assumed to be due to the oxidation of chloride at low pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.