Research on post-vaccination antibody dynamics has become pivotal in estimating COVID-19 vaccine efficacy. We studied anti-SARS-CoV-2 Spike RBD IgG levels in 587 healthcare workers (2038 sera) who completed BNT162b2 vaccination. Average antibody titer 3 weeks after the first dose in COVID-19-naïve participants (median 873.5 AU/mL) was 18-fold higher than the test threshold, with a significant increase 1 month (median 9927.2 AU/mL) and an exponential decrease 3 (median 2976.7 AU/mL) and 6 (median 966.0 AU/mL) months after complete vaccination. Participants with a history of COVID-19 prior to vaccination showed significantly higher antibody levels, particularly after the first dose (median 14,280.2 AU/mL), with a slight decline 1 month (median 12,700.0 AU/mL) and an exponential decline in antibody titers 3 (median 4831.0 AU/mL) and 6 (median 1465.2 AU/mL) months after vaccination. Antibody levels of COVID-19-naïve subjects after the first dose were moderately correlated with age (r = −0.4). Multivariate analysis showed a strong independent correlation between IgG levels 6 months after vaccination and both IgG titers after the first dose and 1 month after vaccination (R2 = 0.709). Regardless of pre-vaccination COVID-19 history, IgG levels 6 months after vaccination were comparable to antibody levels reached by COVID-19-naïve participants after the first vaccine dose.
Anti-SARS-CoV-2 IgG titer decreases rapidly after primovaccination, leading to a mandatory booster vaccination. We analysed anti-SARS-CoV-2 Spike RBD IgG levels (positive ≥ 50 AU/mL) in 405 healthcare workers (3010 sera) who received a booster dose (BD) 9 months after two-dose BNT162b2 primovaccination. Median antibody titer at the time of BD (582.6 AU/mL) was 1.7-fold and 16.4-fold lower than the peak titer after the first (961.5 AU/mL) and the second vaccine dose (SVD) (10,232.6 AU/mL), respectively. One month after vaccination, IgG titer increased 40.6-fold after BD compared with a 10.8-fold increase after primovaccination. Three months after vaccination, post-booster antibodies decreased significantly slower (2.2-fold) than after primovaccination (3.3-fold). At six months, antibodies decreased slower after BD (4.5-fold; median 5556.0 AU/mL) than after primovaccination (9.6-fold; median 1038.5 AU/mL). Antibody titers before and one month after BD correlated weakly (r = 0.30) compared with a strong correlation (r = 0.65) between the corresponding post-primovaccination titers. Pre-vaccination COVID-19 had no effect on IgG levels after BD compared with a positive effect after primovaccination. Despite high post-booster IgG levels, 22.5% of participants contracted mild COVID-19. The trend of IgG decline indicates the need for further revaccination, but the vaccine type should be defined according to viral mutations.
In this study, we evaluated the effect of hepatitis C virus eradication using direct-acting antivirals (DAA) on the serum cytokine and growth factor profiles of chronic hepatitis C patients (CHC). Serum concentrations of 12 cytokines and 13 growth factors were measured in 56 patients with CHC before, during the DAA treatment and after sustained virological response using bead-based flow cytometry. Cytokine and growth factor levels were also measured in 15 healthy individuals. The majority of the selected cytokines and growth factors exhibited similar concentrations before, during and after successful DAA treatment, the exceptions being IL-10, EGF, HGF and VEGF. Significantly lower concentrations of IL-10, IL-13, IL-4, IL-4, IL-9, TNF- α and higher levels of Ang-2, HGF and SCF were observed in patients with CHC before and after DAA treatment compared with healthy individuals. Patients with severe fibrosis stages exhibited higher levels of Ang-2 and lower levels of EGF, PDGF-AA and VEGF. Furthermore, IL-4, IL-5 and SCF were characterized as potential biomarkers of DAA treatment using random forest. Additionally, logistic regression characterized EGF as a potential biomarker of severe CHC. Our results suggest inhibition of pro-inflammatory processes and promotion of liver regeneration in CHC patients during DAA treatment.
Background and Objectives: The aim of this study was to analyze the expression of genes on transcriptomic levels involved in inflammatory immune responses and the development of fibrosis in patients with chronic hepatitis C. Materials and Methods: Expression patterns of 84 selected genes were analyzed with real-time quantitative RT PCR arrays in the peripheral blood of treatment-naive patients with chronic hepatitis C and healthy controls. The panel included pro- and anti-fibrotic genes, genes coding for extracellular matrix (EMC) structural constituents and remodeling enzymes, cell adhesion molecules, inflammatory cytokines, chemokines and growth factors, signal transduction members of the transforming growth factor- beta (TGF-ß) superfamily, transcription factors, and genes involved in epithelial to mesenchymal transition. Results: The expression of SMAD-6 coding for a signal transduction TGF-beta superfamily member as well as MMP-8 coding for an ECM protein were significantly increased in CHC patients compared with controls. Conclusions: Chronic hepatitis C was also characterized by a significant downregulation of a set of genes including CAV-1, CTGF, TIMP-3, MMP-1, ITGA-1, LOX, ITGA-2, PLG and CEBPB encoding various biological response modifiers and transcription factors. Our results suggest that chronic hepatitis C is associated with distinct patterns of gene expression modulation in pathways associated with the regulation of immune responses and development of fibrosis.
The molecular diversity of Epstein–Barr virus (EBV) is exceptionally complex and based on the characterization of sequences coding for several viral genes. The aim of this study was to analyze the distribution of EBV types 1 and 2 and to characterize LMP1 variants in a cohort of 73 patients with infectious mononucleosis (IM), as well as to investigate a possible association between viral diversity and relevant clinical parameters. Population-based sequencing of EBNA-2 gene showed the presence of EBV type 1 in all IM patients. Analysis of LMP1 gene found a restricted repertoire of LMP1 variants with the predominance of wild-type B95-8, China1, Mediterranean and North Carolina variants with the presence of more than one LMP1 variant in 16.4% of patients. Co-infections with different LMP1 variants were associated with significantly higher levels of C-reactive protein and lower levels of maximal neutrophil counts and minimal platelet count. The results of this study have shown a narrow repertoire of LMP1 variants and an exclusive presence of EBV type 1 in a cohort of IM from Croatia, suggesting a characteristic local molecular pattern of this virus. The clinical importance of distinct immunobiological features of IM patients with LMP1 variant co-infections needs to be investigated further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.