The world’s oceans are under stress from climate change, acidification and other human activities, and the UN has declared 2021–2030 as the decade for marine science. To monitor the marine waters, with the purpose of detecting discharges of tracers from unknown locations, large areas will need to be covered with limited resources. To increase the detectability of marine gas seepage we propose a deep probabilistic learning algorithm, a Bayesian Convolutional Neural Network (BCNN), to classify time series of measurements. The BCNN will classify time series to belong to a leak/no-leak situation, including classification uncertainty. The latter is important for decision makers who must decide to initiate costly confirmation surveys and, hence, would like to avoid false positives. Results from a transport model are used for the learning process of the BCNN and the task is to distinguish the signal from a leak hidden within the natural variability. We show that the BCNN classifies time series arising from leaks with high accuracy and estimates its associated uncertainty. We combine the output of the BCNN model, the posterior predictive distribution, with a Bayesian decision rule showcasing how the framework can be used in practice to make optimal decisions based on a given cost function.
We present a new data-driven model to reconstruct nonlinear flow from spatially sparse observations. The proposed model is a version of a Conditional Variational Auto-Encoder (CVAE), which allows for probabilistic reconstruction and thus uncertainty quantification of the prediction. We show that in our model, conditioning on measurements from the complete flow data leads to a CVAE where only the decoder depends on the measurements. For this reason, we call the model semi-conditional variational autoencoder. The method, reconstructions, and associated uncertainty estimates are illustrated on the velocity data from simulations of 2D flow around a cylinder and bottom currents from a simulation of the southern North Sea by the Bergen Ocean Model. The reconstruction errors are compared to those of the Gappy proper orthogonal decomposition method.
This paper describes the utility of developing marine system models to aid the efficient and regulatory compliant development of offshore carbon storage, maximising containment assurance by well-planned monitoring strategies. Using examples from several model systems, we show that marine models allow us to characterize the chemical perturbations arising from hypothetical release scenarios whilst concurrently quantifying the natural variability of the system with respect to the same chemical signatures. Consequently models can identify a range of potential leakage anomaly detection criteria, identifying the most sensitive discriminators applicable to a given site or season. Further, using models as in-silico testbeds we can devise the most cost-efficient deployment of sensors to maximise detection of CO 2 leakage. Modelling studies can also contribute to the required risk assessments, by quantifying potential impact from hypothetical release scenarios. Finally, given this demonstrable potential we discuss the challenges to ensuring model systems are available, fit for purpose and transferable to CCS operations across the globe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.