Blood lipids and metabolites are markers of current health and future disease risk. Here, we describe plasma nuclear magnetic resonance (NMR) biomarker data for 118,461 participants in the UK Biobank. The biomarkers cover 249 measures of lipoprotein lipids, fatty acids, and small molecules such as amino acids, ketones, and glycolysis metabolites. We provide an atlas of associations of these biomarkers to prevalence, incidence, and mortality of over 700 common diseases (nightingalehealth.com/atlas). The results reveal a plethora of biomarker associations, including susceptibility to infectious diseases and risk of various cancers, joint disorders, and mental health outcomes, indicating that abundant circulating lipids and metabolites are risk markers beyond cardiometabolic diseases. Clustering analyses indicate similar biomarker association patterns across different disease types, suggesting latent systemic connectivity in the susceptibility to a diverse set of diseases. This work highlights the value of NMR based metabolic biomarker profiling in large biobanks for public health research and translation.
Aims/hypothesis This prospective, observational study examines associations between 51 urinary metabolites and risk of progression of diabetic nephropathy in individuals with type 1 diabetes by employing an automated NMR metabolomics technique suitable for large-scale urine sample collections. Methods We collected 24-h urine samples for 2670 individuals with type 1 diabetes from the Finnish Diabetic Nephropathy study and measured metabolite concentrations by NMR. Individuals were followed up for 9.0 ± 5.0 years until their first sign of progression of diabetic nephropathy, end-stage kidney disease or study end. Cox regressions were performed on the entire study population (overall progression), on 1999 individuals with normoalbuminuria and 347 individuals with macroalbuminuria at baseline. Results Seven urinary metabolites were associated with overall progression after adjustment for baseline albuminuria and chronic kidney disease stage (p < 8 × 10−4): leucine (HR 1.47 [95% CI 1.30, 1.66] per 1-SD creatinine-scaled metabolite concentration), valine (1.38 [1.22, 1.56]), isoleucine (1.33 [1.18, 1.50]), pseudouridine (1.25 [1.11, 1.42]), threonine (1.27 [1.11, 1.46]) and citrate (0.84 [0.75, 0.93]). 2-Hydroxyisobutyrate was associated with overall progression (1.30 [1.16, 1.45]) and also progression from normoalbuminuria (1.56 [1.25, 1.95]). Six amino acids and pyroglutamate were associated with progression from macroalbuminuria. Conclusions/interpretation Branched-chain amino acids and other urinary metabolites were associated with the progression of diabetic nephropathy on top of baseline albuminuria and chronic kidney disease. We found differences in associations for overall progression and progression from normo- and macroalbuminuria. These novel discoveries illustrate the utility of analysing urinary metabolites in entire population cohorts. Graphical abstract
Blood lipids and metabolites are both markers of current health and indicators of risk for future disease. Here, we describe plasma nuclear magnetic resonance (NMR) biomarker data for 118,461 participants in the UK Biobank, an open resource for public health research with extensive clinical and genomic data. The biomarkers cover 249 measures of lipoprotein lipids, fatty acids, and small molecules such as amino acids, ketones, and glycolysis metabolites. We provide a systematic atlas of associations of these biomarkers to prevalence, incidence, and mortality of over 700 common diseases. The results reveal a plethora of biomarker associations, including susceptibility to infectious diseases and risk for onset of various cancers, joint disorders, and mental health outcomes, indicating that abundant circulating lipids and metabolites are risk markers well beyond cardiometabolic diseases. Clustering analyses indicate similar biomarker association patterns across different types of diseases, such as liver diseases and polyneuropathies, suggesting latent systemic connectivity in the susceptibility to a diverse set of diseases. The release of NMR biomarker data at scale in the UK Biobank highlights the promise of metabolic profiling in large cohorts for public health research and translation.
Identifying individuals at high risk of chronic diseases via easily measured biomarkers could improve public health efforts to prevent avoidable illness and death. Here we present nuclear magnetic resonance blood metabolomics from half a million samples from three national biobanks. We built metabolomic risk scores that identify a high-risk group for each of 12 diseases that cause the most morbidity in high-income countries and show consistent cross-biobank replication of the relative risk of disease for these groups. We show that these metabolomic risk scores are more strongly associated with future disease onset than polygenic scores for most of these diseases. In a subset of 18,000 individuals with metabolomic biomarkers measured at two time points we show that people whose scores change have dramatically different future risk of disease, suggesting that repeat measurements capture the benefits of lifestyle change. We show cross-biobank calibration of our scores. Since metabolomics can be measured from a standard blood sample, we propose such tests can be feasibly implemented today in preventative health programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.