It has been asserted that exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increases the risk for diabetes mellitus in humans, observable as hyperglycemia resulting from insulin resistance. There is no animal model for the induction of diabetes by TCDD. On the contrary, TCDD has been shown to increase insulin sensitivity in rats. Therefore, a diabetic rat model was used to study the effects of TCDD on preexisting diabetes. Type II diabetes was induced in male rats by a high-fat diet and streptozotocin. After manifestation of the disease, these rats received loading dose rates (LDRs) of 3.2, 6.4, and 12.8 microg/kg of TCDD p.o., followed by weekly maintenance dose rates. Rats fed a high-fat diet and not dosed with streptozotocin nor with TCDD served as nondiabetic controls. By day 2, serum-glucose levels in diabetic rats treated with the high LDR of 12.8 microg/kg TCDD were already significantly reduced. By day 8, serum-glucose levels had decreased to control levels and were maintained for the duration of the study (32 days). Thus, TCDD effectively counteracted hyperglycemia in this diabetic rat model. In healthy animals, TCDD induced PPAR gamma transcription and activity in a different dose range than that observed for the hypoglycemic effect.
Polychlorinated dibenzo-p-dioxins are persistent environmental pollutants. The most potent congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), causes a wasting syndrome and is a potent carcinogen and immunosuppressant in the rat at high doses. However, low doses cause opposite effects to some of those observed at higher doses, resulting in chemoprevention, stimulation of the immune system, and longevity in experimental animals. The new TCDD analogue, 2,3,7,8-tetrachlorophenothiazine (TCPT), was developed to take advantage of the low-dose effects of dioxins that have potential application as therapeutics. Its development marked a deviation from the traditional scope of phenothiazine drug design by deriving biological effects from aryl substituents. TCPT was synthesized in three steps. The key ring-closing step was performed utilizing a Buchwald-Hartwig amination to provide TCPT in 37% yield. Its potency to induce CYP1A1 activity over 24 h was 370 times lower than that of TCDD in vitro. The elimination half-life of the parent compound in serum was 5.4 h in the rat and 2.7 h in the guinea pig, compared to 11 and 30 days, respectively, for TCDD. These initial findings clearly differentiate TCPT from TCDD and provide the basis for further studies of its potential as a drug lead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.