NF-E2-related factor 2 (Nrf2) is a transcription factor that is activated by oxidative stress and electrophiles that regulates the expression of numerous detoxifying and antioxidant genes. Previous studies have shown that Nrf2 protects the liver from xenobiotic toxicity; however, whether Nrf2 plays a role in lipid homeostasis in liver is not known. Accordingly, wild-type and Nrf2-null mice were fed a high-fat diet (HFD) for up to 4 weeks. Hepatic gene expression and lipid profiles were analyzed for changes in fatty acid, triglyceride, and cholesterol status. It is interesting to note that HFD reduced the mRNA expression of Nrf2 and its target genes in wild-type mice. The mRNA expression of lipogenic and cholesterologenic transcriptional factors and their target genes, such as sterol regulatory element-binding proteins 1c and 2, fatty acid synthase, acetylCoA carboxylase 1, fatty acid elongase, 3-hydroxy-3-methylglutaryl coenzyme A synthase and reductase, and low-density lipoprotein receptor mRNA expression were higher in Nrf2-null mice compared with wild-type mice after feeding a HFD, suggesting that Nrf2 may suppress these pathways. Hepatic triglycerides and cholesterol levels were not different between genotypes, whereas concentrations of hepatic free fatty acid and malondialdehyde equivalents were higher in Nrf2-null mice compared with wild-type mice 4 weeks after HFD feeding. Overall, these results suggest that Nrf2 inhibits lipid accumulation and oxidative stress in mouse liver after feeding a HFD, probably by interfering with lipogenic and cholesterologenic pathways.
Increased dietary fat consumption is associated with colon cancer development. The exact mechanism by which fat induces colon cancer is not clear, however, increased bile acid excretion in response to high-fat diet may promote colon carcinogenesis. The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily, and bile acids are endogenous ligands of FXR. FXR is highly expressed in the intestine and liver where FXR is essential for maintaining bile acid homeostasis. The role of FXR in intestine cancer development is not known. The current study evaluated the effects of FXR deficiency in mice on intestinal cell proliferation and cancer development. The results showed that FXR deficiency resulted in increased colon cell proliferation, which was accompanied by an up-
The mammalian clock regulates major aspects of energy metabolism, including glucose and lipid homoeostasis as well as mitochondrial oxidative metabolism. This study is to identify specific patterns of circadian rhythms for lipid homoeostasis in both female and male mouse livers, and to clarify gender disparity in coupling the peripheral circadian clock to lipid metabolic outputs by nuclear receptors. To achieve this, profiling the diurnal hepatic expression of genes encoding circadian clocks, nuclear receptors and lipid metabolic enzymes was performed. Hepatic lipid levels including cholesterol, triglyceride and non-esterified fatty acids (NEFAs) were monitored over a 24-h period. The cosinor analysis revealed that several genes encoding nuclear receptors and enzymes involved in the lipid metabolic pathway were rhythmically expressed in liver in phase with the peripheral clocks, which were correlated with the diurnal changes of hepatic lipid levels. Gender disparity was observed for circadian characteristics including mesor and amplitude values, accompanied with advances in acrophases in female mouse livers. Accordingly, gender differences were also observed in diurnal lipid homoeostasis. The identification of cycling patterns for lipid metabolic pathways in both female and male mouse livers may shed light on the development of gender-based treatment for human diseases related to the coordination of the cellular clock and control of lipid homoeostasis.Key words: Circadian rhythm, gender, lipid homoeostasis, liver, nuclear receptor.Abbreviations: Bmal1, brain and muscle Arnt-like protein 1; Clock, circadian locomotor output cycles kaput; Cry, cryptochrome; LXR, liver X receptor; Mesor, midline estimating statistic of rhythm; NEFA, nonesterified fatty acids; Per, period; PGC1, PPARg coactivator 1; PPAR, peroxisome proliferator-activated receptor; ROR, retinoid-related orphan receptor; RORE, ROR response element.Circadian rhythms are daily cycles of multiple molecular, biochemical, physiological and behavioural processes that are driven by an endogenous clock with an approximate 24-h periodicity. Circadian rhythms in mammals are governed substantially by the main time-keeping system, called the central circadian clock, located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Circadian clocks also exist in most peripheral tissues and even in cultured cells. It is believed that the master circadian clock synchronizes the peripheral clocks through both neural and humoral factors, allowing animals to adapt their feeding, activity and metabolism to predictable rhythmic cycles. Environmental light is the predominant Zeitgeber (time-giver) to reset the intrinsic clocks. In addition, other cyclic inputs such as temperature, food, noise or social cues may also influence the phase of clocks (1-3).The central and peripheral clocks share common molecular circuitry. The circadian clockwork consists of two auto-regulatory feedback loops connected by a central pair of basic-helix-loop-helix (bHLH)-PAS (PER-ARNT-SIM)-cont...
It has been asserted that exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increases the risk for diabetes mellitus in humans, observable as hyperglycemia resulting from insulin resistance. There is no animal model for the induction of diabetes by TCDD. On the contrary, TCDD has been shown to increase insulin sensitivity in rats. Therefore, a diabetic rat model was used to study the effects of TCDD on preexisting diabetes. Type II diabetes was induced in male rats by a high-fat diet and streptozotocin. After manifestation of the disease, these rats received loading dose rates (LDRs) of 3.2, 6.4, and 12.8 microg/kg of TCDD p.o., followed by weekly maintenance dose rates. Rats fed a high-fat diet and not dosed with streptozotocin nor with TCDD served as nondiabetic controls. By day 2, serum-glucose levels in diabetic rats treated with the high LDR of 12.8 microg/kg TCDD were already significantly reduced. By day 8, serum-glucose levels had decreased to control levels and were maintained for the duration of the study (32 days). Thus, TCDD effectively counteracted hyperglycemia in this diabetic rat model. In healthy animals, TCDD induced PPAR gamma transcription and activity in a different dose range than that observed for the hypoglycemic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.