The Wnt-Frizzled (Fzd) G-protein-coupled receptor system, involving 19 distinct Wnt ligands and 10 Fzd receptors, plays key roles in the development and functioning of many organ systems. There is increasing evidence that Wnt-Fzd signalling is important in regulating cardiac function. Wnt-Fzd signalling primarily involves a canonical pathway, with dishevelled-1-dependent nuclear translocation of β-catenin that derepresses Wnt-sensitive gene transcription, but can also include non-canonical pathways via phospholipase-C/Ca 2+ mobilization and dishevelled-protein activation of small GTPases. Wnt-Fzd effects vary with specific ligand/receptor interactions and associated downstream pathways. This paper reviews the biochemistry and physiology of the Wnt-Fzd complex, and presents current knowledge of Wnt signalling in cardiac remodelling processes such as hypertrophy and fibrosis, as well as disease states such as myocardial infarction (MI), heart failure and arrhythmias. Wnt signalling is activated during hypertrophy; inhibiting Wnt signalling by activating glycogen synthase kinase attenuates the hypertrophic response. Wnt signalling has complex and time-dependent actions post-MI, so that either beneficial or harmful effects might result from Wnt-directed interventions. Stem cell biology, a promising area for therapeutic intervention, is highly regulated by Wnt signalling. The Wnt system regulates fibroblast function, and is prominently altered in arrhythmogenic ventricular cardiomyopathy, a familial disease involving excess deposition of fibroadipose tissue. Wnt signalling controls connexin43 expression, thereby contributing to the regulation of cardiac electrical stability and arrhythmia generation. Although much has been learned about Wnt-Fzd signalling in hypertrophy and infarction, its role is poorly understood for a broad range of other heart disorders. Much more needs to be learned for its contributions to be fully appreciated, and to permit more effective exploitation of its enormous potential in therapeutic development.Mona Aflaki (left), Kristin Dawson (centre) and Stanley Nattel (right) work in the Research Centre of the Montreal Heart Institute. Their areas of investigation are varied but include cardiac remodelling, electrophysiology and arrhythmogenesis, with a particular focus on the development of innovative therapeutic approaches to heart disease. The present paper relates to their interest in pathological remodelling paradigms and the potential importance of the Wnt-Frizzled system in the evolution of cardiac disorders. They are studying the system in order to better understand heart disease, with the hope of using the insights gained to identify new therapeutic targets.K. Dawson and M. Aflaki contributed equally to this work and share 1st authorship.
4; miR21 knockdown in rats subjected to myocardial infarction (MI) decreases AF duration and atrial fibrosis.9 MiR29b is decreased in the MI border zone, leading to derepression of extracellular matrix (ECM) genes and ECM deposition. 5 MiR133a is decreased in left ventricular hypertrophy and directly targets connective tissue growth factor, which promotes fibrosis. 6 Clinical Perspective on p 1475We designed this study to evaluate the potential importance of miR29b in AF. We first assessed miR29b expression in atrial tissues from an animal AF model with prominent fibrotic changes. We then proceeded to manipulate miR29b in vitro using lentiviruses and saw changes in corresponding miR29b ECM target genes at the mRNA and protein levels. Because plasma miR concentrations change in patients with MI, coronary artery Background-Congestive heart failure (CHF) causes atrial fibrotic remodeling, a substrate for atrial fibrillation (AF) maintenance. MicroRNA29 (miR29) targets extracellular matrix proteins. In the present study, we examined miR29b changes in patients with AF and/or CHF and in a CHF-related AF animal model and assessed its potential role in controlling atrial fibrous tissue production. Methods and Results-Control dogs were compared with dogs subjected to ventricular tachypacing for 24 hours, 1 week, or 2 weeks to induce CHF. Atrial miR29b expression decreased within 24 hours in both whole atrial tissue and atrial fibroblasts (−87% and −92% versus control, respectively; p<0.001 for both) and remained decreased throughout the time course. Expression of miR29b extracellular matrix target genes collagen-1A1 (COL1A1), collagen-3A1 (COL3A1), and fibrillin increased significantly in CHF fibroblasts. Lentivirus-mediated miR29b knockdown in canine atrial fibroblasts (−68%; p<0.01) enhanced COL1A1, COL3A1, and fibrillin mRNA expression by 28% (p<0.01), 19% (p<0.05), and 20% (p<0.05), respectively, versus empty virus-infected fibroblasts and increased COL1A1 protein expression by 90% (p<0.05). In contrast, 3-fold overexpression of miR29b decreased COL1A1, COL3A1, and fibrillin mRNA by 65%, 62%, and 61% (all p<0.001), respectively, versus scrambled control and decreased COL1A1 protein by 60% (p<0.05). MiR29b plasma levels were decreased in patients with CHF or AF (by 53% and 54%, respectively; both p<0.001) and were further decreased in patients with both AF and CHF (by 84%; p<0.001). MiR29b expression was also reduced in the atria of chronic AF patients (by 54% versus sinus rhythm; p<0.05). Adenoassociated viral-mediated knockdown of miR29b in mice significantly increased atrial COL1A1 mRNA expression and cardiac tissue collagen content. Conclusions-MiR29
Rationale: Fibroblasts are involved in cardiac arrhythmogenesis and contribute to the atrial fibrillation substrate in congestive heart failure (CHF) by generating tissue fibrosis. Fibroblasts display robust ion currents, but their functional importance is poorly understood. Objective: To characterize atrial fibroblast inward-rectifier K + current ( I K1 ) remodeling in CHF and its effects on fibroblast properties. Methods and Results: Freshly isolated left atrial fibroblasts were obtained from controls and dogs with CHF (ventricular tachypacing). Patch clamp was used to record resting membrane potential (RMP) and I K1 . RMP was significantly increased by CHF (from −43.2±0.8 mV, control, to −55.5±0.9 mV). CHF upregulated I K1 (eg, at −90 mV from −1.1±0.2 to −2.7±0.5 pA/pF) and increased the expression of KCNJ2 mRNA (by 52%) and protein (by 80%). Ba 2+ (300 μmol/L) decreased the RMP and suppressed the RMP difference between controls and dogs with CHF. Store-operated Ca 2+ entry (Fura-2-acetoxymethyl ester) and fibroblast proliferation (flow cytometry) were enhanced by CHF. Lentivirus-mediated overexpression of KCNJ2 enhanced I K1 and hyperpolarized fibroblasts. Functional KCNJ2 suppression by lentivirus-mediated expression of a dominant negative KCNJ2 construct suppressed I K1 and depolarized RMP. Overexpression of KCNJ2 increased Ca 2+ entry and fibroblast proliferation, whereas the dominant negative KCNJ2 construct had opposite effects. Fibroblast hyperpolarization to mimic CHF effects on RMP enhanced the Ca 2+ entry. MicroRNA-26a, which targets KCNJ2, was downregulated in CHF fibroblasts. Knockdown of endogenous microRNA-26 to mimic CHF effects unregulated I K1 . Conclusions: CHF upregulates fibroblast KCNJ2 expression and currents, thereby hyperpolarizing RMP, increasing Ca 2+ entry, and enhancing atrial fibroblast proliferation. These effects are likely mediated by microRNA-26a downregulation. Remodeling-induced fibroblast KCNJ2 expression changes may play a role in atrial fibrillation promoting fibroblast remodeling and structural/arrhythmic consequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.