Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity.
Following precipitous population declines as a result of intensive hunting and th century predator-control programmes, hybridization of the Critically Endangered red wolf Canis rufus with coyotes Canis latrans posed a significant challenge for red wolf recovery efforts. Anthropogenic mortality and hybridization continue to pose challenges; the increasing number of wolf deaths caused by humans has limited wolf population growth, facilitated the encroachment of coyotes into eastern North Carolina, and affected the formation and disbandment of breeding pairs. We assessed the effects of anthropogenic mortality on Canis breeding units during a -year period (-). Our results show that deaths caused by people accounted for .% of breeding pair disbandment, and gunshots were the primary cause of mortality. Red wolves replaced congeneric breeding pairs . % of the time when pairs disbanded under natural conditions or as a result of management actions. Since the mid s anthropogenic mortality has caused annual preservation rates of red wolf breeding pairs to decline by %, and replacement of Canis breeders by red wolves to decline by %. Our results demonstrate that human-caused mortality, specifically by gunshots, had a strong negative effect on the longevity of red wolf pairs, which may benefit coyotes indirectly by removing their primary competitor. Coyotes are exacerbating the decline of red wolves by pair-bonding with resident wolves whose mates have been killed.
The generation of genome-wide sequence data has brought with it both exciting opportunities for conservation and challenges for determining appropriate management practices in the face of complex evolutionary histories. Genomic data can provide deep insight into taxa with complex evolutionary origins, and is a powerful tool for biologists to obtain a more complete view of ancestry. Many policy decisions are encumbered by patterns of gene flow between species that reveal complex evolutionary histories. Here, we review conservation decisions in admixed species and highlight genomics research that demonstrates the commonality of hybridization in wildlife. We encourage a shift toward a web-of-life framework with emphasis on the need to incorporate flexibility in conservation practices by establishing a policy for lineages of admixed ancestry. In particular, we promote a conceptual framework under which hybridization, even extensive hybridization, no longer disqualifies a species from protection; instead, we encourage customized case-by-case management to protect evolutionary potential and maintain processes that sustain ecosystems.
In natural populations, the expression and severity of inbreeding depression can vary widely across taxa. Describing processes that influence the extent of inbreeding and inbreeding depression aid in our understanding of the evolutionary history of mating systems such as cooperative breeding and nonrandom mate selection. Such findings also help shape wildlife conservation theory because inbreeding depression reduces the viability of small populations. We evaluated the extent of inbreeding and inbreeding depression in a small, re-introduced population of red wolves (Canis rufus) in North Carolina. Since red wolves were first re-introduced in 1987, pedigree inbreeding coefficients (f) increased considerably and almost every wild born wolf was inbred (average f = 0.154 and max f = 0.383). The large inbreeding coefficients were due to both background relatedness associated with few founders and numerous close relative matings. Inbreeding depression was most evident for adult body size and generally absent for direct fitness measures such as reproductive success and survival; no lethal equivalents (LE = 0.00) were detected in juvenile survival. The lack of strong inbreeding depression in direct measures of fitness could be due to a founder effect or because there were no outbred individuals for comparison. Our results highlight the variable expression of inbreeding depression across traits and the need to measure a number of different traits when evaluating inbreeding depression in a wild population.
The threatened eastern wolf is found predominantly in protected areas of central Ontario and has an evolutionary history obscured by interbreeding with coyotes and gray wolves, which challenges its conservation status and subsequent management. Here, we used a population genomics approach to uncover spatial patterns of variation in 281 canids in central Ontario and the Great Lakes region. This represents the first genome-wide single nucleotide polymorphism (SNP) dataset with substantial sample sizes of representative populations. Although they comprise their own genetic cluster, we found evidence of eastern wolf dispersal outside of the boundaries of protected areas, in that the frequency of eastern wolf genetic variation decreases with increasing distance from provincial parks. We detected eastern wolf alleles in admixed coyotes along the northeastern regions of Lake Huron and Lake Ontario. Our analyses confirm the unique genomic composition of eastern wolves, which are mostly restricted to small fragmented patches of protected habitat in central Ontario. We hope this work will encourage an innovative discussion regarding a plan for managed introgression, which could conserve eastern wolf genetic material in any genome regardless of their potential mosaic ancestry composition and the habitats that promote them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.