BackgroundHuman SAMHD1 is a triphosphohydrolase that restricts the replication of retroviruses, retroelements and DNA viruses in noncycling cells. While modes of action have been extensively described for human SAMHD1, only little is known about the regulation of SAMHD1 in the mouse. Here, we characterize the antiviral activity of murine SAMHD1 with the help of knockout mice to shed light on the regulation and the mechanism of the SAMHD1 restriction and to validate the SAMHD1 knockout mouse model for the use in future infectivity studies.ResultsWe found that endogenous mouse SAMHD1 restricts not only HIV-1 but also MLV reporter virus infection at the level of reverse transcription in primary myeloid cells. Similar to the human protein, the antiviral activity of murine SAMHD1 is regulated through phosphorylation at threonine 603 and is limited to nondividing cells. Comparing the susceptibility to infection with intracellular dNTP levels and SAMHD1 phosphorylation in different cell types shows that both functions are important determinants of the antiviral activity of murine SAMHD1. In contrast, we found the proposed RNase activity of SAMHD1 to be less important and could not detect any effect of mouse or human SAMHD1 on the level of incoming viral RNA.ConclusionOur findings show that SAMHD1 in the mouse blocks retroviral infection at the level of reverse transcription and is regulated through cell cycle-dependent phosphorylation. We show that the antiviral restriction mediated by murine SAMHD1 is mechanistically similar to what is known for the human protein, making the SAMHD1 knockout mouse model a valuable tool to characterize the influence of SAMHD1 on the replication of different viruses in vivo.
The nonpathogenic human GB virus C (GBV-C), a member of the Flaviviridae, is highly prevalent in individuals with HIV-1 infections or with parenteral and sexual risk factors. Long-term GBV-C viremia has been associated with better survival or improved diagnosis in several epidemiological studies. In a previous study we reported that the E2 glycoprotein of GBV-C interferes with HIV-1 entry in vitro. To address the question what region of the E2 protein is involved in suppression of HIV-1 replication, we performed an E2-derived peptide scanning and determined the HIV-inhibitory activity of each peptide in HIV replication assays. We demonstrate here that peptides representing the N-terminal part of the E2 protein from amino acids (aa) 29 to 72 are able to inhibit efficiently HIV-1 replication in vitro. In particular, the peptides P6-2 (representing the E2-region from aa 45 to 64) and P4762 (aa 37 to 64) showed the highest potency in HIV replication assays performed on TZM-bl cells with 50% inhibitory concentrations between 0.1 and 2 M. However, primary HIV-1 isolates representing clades A to H showed a high variability in their sensitivity to E2 peptides. Pseudovirus inhibition assays revealed that the sensitivity is determined by the gp120/gp41 envelope proteins. Using HIV-1 BlaM-Vpr-based fusion assays, we demonstrate that the E2-derived peptides prevent HIV-1 binding or fusion, presumably via interaction with the HIV-1 particle. Together, these findings reveal a new mechanism of viral interference, suggesting that the envelope protein E2 of GBV-C target directly HIV-1 particles to avoid entry of these virions.
The promyelocytic leukemia protein (PML) is the main structural component of the nuclear matrix structures termed nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs). PML and ND10 structures have been shown to mediate an intrinsic immune response against a variety of different viruses. Their role during retroviral replication, however, is still controversially discussed. In this study, we analyzed the role of PML and the ND10 components Daxx and Sp100 during retroviral replication in different cell types. Using cell lines exhibiting a shRNA-mediated knockdown, we found that PML, but not Daxx or Sp100, inhibits HIV and other retroviruses in a cell type-dependent manner. The PML-mediated block to retroviral infection was active in primary human fibroblasts and murine embryonic fibroblasts but absent from T cells and myeloid cell lines. Quantitative PCR analysis of HIV cDNA in infected cells revealed that PML restricts infection at the level of reverse transcription. Our findings shed light on the controversial role of PML during retroviral infection and show that PML contributes to the intrinsic restriction of retroviral infections in a cell type-dependent manner.
A strategy for antiviral drug discovery is the elucidation and imitation of viral interference mechanisms. HIV-1 patients benefit from a coinfection with GB Virus C (GBV-C), since HIV-positive individuals with long-term GBV-C viraemia show better survival rates than HIV-1 patients without persisting GBV-C. A direct influence of GBV-C on HIV-1 replication has been shown in coinfection experiments. GBV-C is a human non-pathogenic member of the flaviviridae family that can replicate in T and B cells. Therefore, GBV-C shares partly the same ecological niche with HIV-1. In earlier work we have demonstrated that recombinant glycoprotein E2 of GBV-C and peptides derived from the E2 N-terminus interfere with HIV entry. In this study we investigated the underlying mechanism. Performing a virus-cell fusion assay and temperature-arrested HIV-infection kinetics, we provide evidence that the HIV-inhibitory E2 peptides interfere with late HIV-1 entry steps after the engagement of gp120 with CD4 receptor and coreceptor. Binding and competition experiments revealed that the N-terminal E2 peptides bind to the disulfide loop region of HIV-1 transmembrane protein gp41. In conjunction with computational analyses, we identified sequence similarities between the N-termini of GBV-C E2 and the HIV-1 glycoprotein gp120. This similarity appears to enable the GBV-C E2 N-terminus to interact with the HIV-1 gp41 disulfide loop, a crucial domain involved in the gp120-gp41 interface. Furthermore, the results of the present study provide initial proof of concept that peptides targeted to the gp41 disulfide loop are able to inhibit HIV fusion and should inspire the development of this new class of HIV-1 entry inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.