The inhalation of Francisella tularensis biovar A causes pneumonic tularemia associated with high morbidity and mortality rates in humans. Exposure to F. tularensis usually occurs by accident, but there is increasing awareness that F. tularensis may be deliberately released in an act of bioterrorism or war. The development of a vaccine against pneumonic tularemia has been limited by a lack of information regarding the mechanisms required to protect against this disease. Vaccine models for F. tularensis in inbred mice would facilitate investigations of the protective mechanisms and significantly enhance vaccine development. Intranasal vaccination with the attenuated live vaccine strain (LVS) of F. tularensis reproducibly protected BALB/c mice, but not C57BL/6 mice, against intranasal and subcutaneous challenges with a virulent clinical isolate of F. tularensis biovar A (NMFTA1). The resistance of LVS-vaccinated BALB/c mice to intranasal NMFTA1 challenge was increased 100-fold by boosting with live NMFTA1 but not with LVS. The protective response was specific for F. tularensis and required both CD4 and CD8 T cells. The vaccinated mice appeared outwardly healthy for more than 2 months after NMFTA1 challenge, even though NMFTA1 was recovered from more than half of the vaccinated mice. These results show that intranasal vaccination induces immunity that protects BALB/c mice from intranasal infection by F. tularensis biovar A.
Bioweapons are most often designed for delivery to the lung, although this route is not the usual portal of entry for many of the pathogens in the natural environment. Vaccines and therapeutics that are efficacious for natural routes of infection may not be effective against the pulmonary route. Pulmonary models are needed to investigate the importance of specific bacterial genes in virulence, to identify components of the host immune system that are important in providing innate and acquired protection, and for testing diagnostic and therapeutic strategies. This report describes the characteristics of host and Bacillus anthracis interactions in a murine pulmonary-infection model. The infective dose varied depending on the route and method of inoculation. The germination process in the lung began within 1 h of inoculation into the lung, although growth within the lung was limited. B. anthracis was found in the lung-associated lymph nodes ϳ5 h after infection. Minimal pneumonitis was associated with the lung infection, but significant systemic pathology was noted after dissemination. Infected mice typically succumbed to infection ϳ3 to 4 days after inoculation. The 50% lethal doses differed among inbred strains of mice, but within a given mouse strain, neither the age nor the sex of the mice influenced susceptibility to B. anthracis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.