HeLaHF cells are transformation revertants of cervical cancer HeLa cells and have lost anchorage-independent growth potential and tumorigenicity. Activation of tumor suppressor(s) was implicated previously in this transformation reversion. In this study, expression profiling analysis was carried out to identify potential oncogenes that are down-regulated in HeLaHF cells. We found that all three members of the NR4A1/Nur77/ NGFIB orphan nuclear hormone receptor subfamily (NR4A1, NR4A2, and NR4A3) were down-regulated in the HeLaHF revertant. Small interfering RNA-mediated down-regulation of NR4A2 in HeLa cells, either transiently or stably, resulted in reduced anchorage-independent growth that was largely attributable to increased anoikis. Furthermore, downregulation of NR4A2 as well as NR4A1 promoted intrinsic apoptosis. These phenotypes were also observed in several other experimental cancer cells, suggesting the observed apoptosis suppression is a more general property of NR4A2 and NR4A1. These phenotypes also suggest that the Nur77/NGFIB subfamily of orphan receptors exhibit certain oncogenic functionalities with regards to cell proliferation and apoptosis and could therefore be evaluated as potential cancer therapeutic targets.
A cytokine-based, in vitro model of foreign body giant cell (FBGC) formation was utilized to examine the effect of biomaterial surface chemistry on the adhesion, motility, and fusion of monocytes and macrophages. Human monocytes were cultured for 10 days on 14 different silane-modified glass surfaces, during which time the cells assumed the macrophage phenotype. The adhesion of monocytes and macrophages during the culture period decreased by an average of approximately 50%, with the majority of cell loss observed during days 1-3. Most important, the adhesion of monocytes and macrophages was surface independent except for two surfaces containing terminal methyl groups, which decreased adhesion levels. Interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were added to the medium to induce FBGC formation and enhance macrophage adhesion, respectively. Surprisingly, GM-CSF decreased long-term monocyte/macrophage adhesion. IL-4-induced FBGC density was strongly influenced by the surface carbon content, as determined by X-ray photoelectron spectroscopy (XPS). In contrast, contact angle and surface energy displayed no correlation with FBGC formation. The motility of adherent macrophages, as measured by time-lapse confocal microscopy, was not affected significantly by differences in surface chemistry or the addition of cytokines. The surface dependence of FBGC formation is hypothesized to be the result of varying levels of silane-derived surface carbon.
SUMMARY During the inflammatory response to an implanted biomaterial, monocytes undergo a striking phenotypic progression of differentiation into macrophages, which may subsequently fuse to form foreign body giant cells (FBGCs). Taking advantage of an in vitro system of cytokine-induced FBGC formation together with the optical slicing capabilities of a confocal microscope, we investigated the cytoskeletal reorganization and adhesive structure development during this dramatic morphological progression. Human monocytes demonstrated diffuse cytoplasmic staining of adhesive structural proteins. Punctate filamentous (F)-actin structures appeared along the ventral cell membrane of macrophages and were identified as the core of podosome adhesive structures by the distinctive ring staining of vinculin, talin, and paxillin around the F-actin. Cytokine-induced FBGCs were characterized by a restriction of podosomes to the extreme periphery of the ventral cell surface. Although macrophages and FBGC contained equivalent amounts of F-actin, significantly more F-actin was located within 1 m of the ventral plasma membrane in FBGCs compared to macrophages. Taken together, these results provide new information on the dynamic cytoskeletal reorganization and adhesive structure development that occur during phenotypic progression from human monocytes to macrophages to FBGC. Furthermore, they suggest the acquisition of functional specializations on FBGC formation, which may enhance our understanding of chronic inflammatory processes.
A family of biodegradable poly(ester amide) (PEA) co-polymers based on naturally occurring alpha-amino acids has been developed for applications ranging from biomedical device coatings to delivery of therapeutic biologics. An important feature of PEA co-polymer coatings may be their ability to promote a natural healing response. To gain insight into this process, representative elastomeric PEAs designed for a cardiovascular stent coating were compared to non-degradable and biodegradable polymers in a series of in vitro assays to examine blood and cellular responses. Each PEA contained L-leucine and L-lysine with the latter derivatized by either benzyl alcohol or the nitroxide radical 4-amino TEMPO as a pendant group. Monocytes adherent to PEA secreted reduced levels of the pro-inflammatory interleukins (IL)-6 and IL-1 beta into the culture supernatant compared to those on comparison polymers but secreted significantly higher amounts of the anti-inflammatory mediator, IL-1 receptor antagonist. As a measure of pro-healing tissue compatibility for cardiovascular applications, endothelial cells adhered, spread, and proliferated on PEA. PEA was also determined to be non-hemolytic and did not deplete platelets or leukocytes from whole blood. ATP release from freshly isolated human platelets on PEA, a measure of their activation, was comparable to the well-known and compatible comparison polymers poly(lactic-co-glycolic acid) and n-poly(butyl methacrylate). Taken together, these in vitro studies of the blood and tissue compatibility of these biodegradable, alpha-amino-acid-based PEAs suggest that they may support a more natural healing response by attenuating the pro-inflammatory reaction to the implant and promoting growth of appropriate cells for repair of the tissue architecture.
Human monocytes isolated from peripheral venous blood were assayed for their ability to adhere to various polymers. The culture supernatants were also assayed for the cytokines, interleukin-1 beta (IL-beta), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha). The polymers evaluated for adherence and cytokine production included Pellethane, polyethylene and poly[n-butyl methacrylate (BMA)] coated with poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-co-alkyl methacrylate] copolymers. In some experiments the test polymers were adsorbed with fibrinogen or IgG prior to the addition of monocytes. MPC copolymer-coated materials inhibited monocyte and macrophage adhesion after 1 and 8 days of culture relative to corresponding uncoated polymers and tissue culture polystyrene (TCPS). The degree of inhibition by coated Pellethane compared to uncoated Pellethane was the greatest, while inhibition of adhesion by coated poly(BMA) was the least compared to uncoated poly(BMA). However, adhesion was significantly decreased on both coated and uncoated poly(BMA) by day 8. While IL-1 beta, IL-6, and TNF-alpha release was variably influenced by polymer coating, release was consistently inhibited relative to TCPS on day 1. However, cytokine production was not inhibited compared to corresponding uncoated polymers on day 1. With or without protein preadsorption, IL-1 beta release was not detectable in the supernatants of any polymer on day 8, IL-6 production was diminished on day 8, and TNF-alpha production was sustained on day 8. Overall, MPC copolymer-coated and uncoated poly(BMA) were the least stimulating, while TCPS was the most stimulating.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.