We present the results of a numerical investigation of droplets walking in a harmonic potential on a vibrating fluid bath. The droplet's trajectory is described by an integrodifferential equation, which is simulated numerically in various parameter regimes. We produce a regime diagram that summarizes the dependence of the walker's behavior on the system parameters for a droplet of fixed size. At relatively low vibrational forcing, a number of periodic and quasiperiodic trajectories emerge. In the limit of large vibrational forcing, the walker's trajectory becomes chaotic, but the resulting trajectories can be decomposed into portions of unstable quasiperiodic states.
This work is dedicated to putting on a solid analytic ground the theory of local well-posedness for the two dimensional Dysthe equation. This equation can be derived from the incompressible Navier-Stokes equation after performing an asymptotic expansion of a wavetrain modulation to the fourth order. Recently, this equation has been used to numerically study rare phenomena on large water bodies such as rogue waves. In order to study well-posedness, we use Strichartz, and improved smoothing and maximal function estimates. We follow ideas from the pioneering work of Kenig, Ponce and Vega, but since the equation is highly anisotropic, several technical challenges had to be resolved. We conclude our work by also presenting an ill-posedness result.
In this paper, we present a probabilistic study of rare phenomena of the cubic nonlinear Schrödinger equation on the torus in a weakly nonlinear setting. This equation has been used as a model to numerically study the formation of rogue waves in deep sea. Our results are twofold: first, we introduce a notion of criticality and prove a Large Deviations Principle (LDP) for the subcritical and critical cases. Second, we study the most likely initial conditions that lead to the formation of a rogue wave, from a theoretical and numerical point of view. Finally, we propose several open questions for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.