The PacBio® HiFi sequencing method yields highly accurate long-read sequencing datasets with read lengths averaging 10–25 kb and accuracies greater than 99.5%. These accurate long reads can be used to improve results for complex applications such as single nucleotide and structural variant detection, genome assembly, assembly of difficult polyploid or highly repetitive genomes, and assembly of metagenomes. Currently, there is a need for sample data sets to both evaluate the benefits of these long accurate reads as well as for development of bioinformatic tools including genome assemblers, variant callers, and haplotyping algorithms. We present deep coverage HiFi datasets for five complex samples including the two inbred model genomes Mus musculus and Zea mays, as well as two complex genomes, octoploid Fragaria × ananassa and the diploid anuran Rana muscosa. Additionally, we release sequence data from a mock metagenome community. The datasets reported here can be used without restriction to develop new algorithms and explore complex genome structure and evolution. Data were generated on the PacBio Sequel II System.
The challenge of allelic diversity for assembling haplotypes is exemplified in polyploid genomes containing homoeologous chromosomes of identical ancestry, and significant homologous variation within their ancestral subgenomes. Cultivated strawberry (Fragaria × ananassa) and its wild progenitors are outbred octoploids (2n = 8x = 56) in which up to eight homologous and homoeologous alleles are preserved. This introduces significant risk of haplotype collapse, switching, and chimeric fusions during assembly. Using third generation HiFi sequences from PacBio, we assembled the genome of the day-neutral octoploid F. × ananassa hybrid ‘Royal Royce’ from the University of California. Our goal was to produce subgenome-and haplotype-resolved assemblies of all 56 chromosomes, accurately reconstructing the parental haploid chromosome complements. Previous work has demonstrated that partitioning sequences by parental phase supports direct assembly of haplotypes in heterozygous diploid species. We leveraged the accuracy of HiFi sequence data with pedigree-informed sequencing to partition long read sequences by phase, and reduce the downstream risk of subgenomic chimeras during assembly. We were able to utilize an octoploid strawberry recombination breakpoint map containing 3.6 M variants to identify and break chimeric junctions, and perform scaffolding of the phase-1 and phase-2 octoploid assemblies. The N50 contiguity of the phase-1 and phase-2 assemblies prior to scaffolding and gap-filling was 11 Mb. The final haploid assembly represented seven of 28 chromosomes in a single contiguous sequence, and averaged fewer than three gaps per pseudomolecule. Additionally, we re-annotated the octoploid genome to produce a custom F. × ananassa repeat library and improved set of gene models based on IsoSeq transcript data and an expansive RNA-seq expression atlas. Here we present ‘FaRR1’, a gold-standard reference genome of F. × ananassa cultivar ‘Royal Royce’ to assist future genomic research and molecular breeding of allo-octoploid strawberry.
The PacBio ® HiFi sequencing method yields highly accurate long-read sequencing datasets with read lengths averaging 10-25 kb and accuracies greater than 99.5%. These accurate long reads can be used to improve results for complex applications such as single nucleotide and structural variant detection, genome assembly, assembly of difficult polyploid or highly repetitive genomes, and assembly of metagenomes. Currently, there is a need for sample data sets to both evaluate the benefits of these long accurate reads as well as for development of bioinformatic tools including genome assemblers, variant callers, and haplotyping algorithms. We present deep coverage HiFi datasets for five complex samples including the two inbred model genomes Mus musculus and Zea mays, as well as two complex genomes, octoploid Fragaria × ananassa and the diploid anuran Rana muscosa. Additionally, we release sequence data from a mock metagenome community. The datasets reported here can be used without restriction to develop new algorithms and explore complex genome structure and evolution. Data were generated on the PacBio Sequel II System.
The genome of Paenalcaligenes hominis, isolated from a paraplegic patient with neurogenic bladder, was sequenced with the Pacific Biosciences RSII platform. The genome size is 2.68 Mb and includes 3,096 annotated coding sequences, including genes associated with quinone cofactors, which play crucial roles in the virulence of Gram-negative bacteria.
The whole genome sequence of Dolosigranulum pigrum isolated from the blood of a patient with interstitial lung disease was sequenced with the Pacific Biosciences RS II platform. The genome size is 2.1 Mb with 2,127 annotated coding sequences; it contained two clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.