The subgingival microbiome is one of the most stable microbial ecosystems in the human body. Alterations in the subgingival microbiome have been associated with periodontal disease, but their variations over time and between different subgingival sites in periodontally healthy individuals have not been well described. We performed extensive, longitudinal sampling of the subgingival microbiome from five periodontally healthy individuals to define baseline spatial and temporal variations. A total of 251 subgingival samples from 5 subjects were collected over 6–12 months and deep sequenced. The overall microbial diversity and composition differed significantly between individuals. Within each individual, we observed considerable differences in microbiome composition between different subgingival sites. However, for a given site, the microbiome was remarkably stable over time, and this stability was associated with increased microbial diversity but was inversely correlated with the enrichment of putative periodontal pathogens. In contrast to microbiome composition, the predicted functional metagenome was similar across space and time, suggesting that periodontal health is associated with shared gene functions encoded by different microbiome consortia that are individualized. To our knowledge, this is one of the most detailed longitudinal analysis of the healthy subgingival microbiome to date that examined the longitudinal variability of different subgingival sites within individuals. These results suggest that a single measurement of the healthy subgingival microbiome at a given site can provide long term information of the microbial composition and functional potential, but sampling of each site is necessary to define the composition and community structure at individual subgingival sites.
Smoking accelerates periodontal disease and alters the subgingival microbiome. However, the relationship between smoking-associated subgingival dysbiosis and progression of periodontal disease is not well understood. Here, we sampled 233 subgingival sites longitudinally from 8 smokers and 9 non-smokers over 6–12 months, analyzing 804 subgingival plaque samples using 16 rRNA sequencing. At equal probing depths, the microbial richness and diversity of the subgingival microbiome was higher in smokers compared to non-smokers, but these differences decreased as probing depths increased. The overall subgingival microbiome of smokers differed significantly from non-smokers at equal probing depths, which was characterized by colonization of novel minority microbes and a shift in abundant members of the microbiome to resemble periodontally diseased communities enriched with pathogenic bacteria. Temporal analysis showed that microbiome in shallow sites were less stable than deeper sites, but temporal stability of the microbiome was not significantly affected by smoking status or scaling and root planing. We identified 7 taxa—Olsenella sp., Streptococcus cristatus, Streptococcus pneumoniae, Streptococcus parasanguinis, Prevotella sp., Alloprevotella sp., and a Bacteroidales sp. that were significantly associated with progression of periodontal disease. Taken together, these results suggest that subgingival dysbiosis in smokers precedes clinical signs of periodontal disease, and support the hypothesis that smoking accelerates subgingival dysbiosis to facilitate periodontal disease progression.
Smoking accelerates periodontal disease and alters the subgingival microbiome. However, the relationship between smoking-associated subgingival dysbiosis and progression of periodontal disease is not well understood. Here, we sampled 233 subgingival sites longitudinally from 8 smokers and 9 non-smokers over 6-12 months, analyzing 804 subgingival plaque samples using 16 rRNA sequencing. At equal probing depths, the microbial richness and diversity of the subgingival microbiome was higher in smokers compared to non-smokers, but these differences decreased as probing depths increased. The overall subgingival microbiome of smokers differed significantly from non-smokers at equal probing depths, which was characterized by colonization of novel minority microbes and a shift in abundant members of the microbiome to resemble periodontally diseased communities enriched with pathogenic bacteria. Temporal analysis showed that microbiome in shallow sites were less stable than deeper sites, but temporal stability was not significantly affected by smoking status. We identified 5 taxa – Olsenella sp. 807, Streptococcus cristatus, Atopobium rimae, Prevotella sp. 301 and 308 that were significantly associated with progression of periodontal disease. Taken together, these results suggest that subgingival dysbiosis in smokers precedes clinical signs of periodontal disease, and support the hypothesis that smoking accelerates subgingival dysbiosis to facilitate periodontal disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.