Although humic acids (HAs) from peat exhibit various therapeutic properties, there is little information available concerning their physicochemical and antioxidant properties. To address this issue, nine different types of peat, including oligotrophic, mesotrophic, and minerotrophic peat samples, were used for isolation of HA fractions by basic (HAb) and pyrophosphate (HAp) extractions. Physical parameters of the HAs were analyzed by UV-Vis, fluorescent, infrared (IR), and electron paramagnetic resonance (EPR) spectroscopy. Average Mr of the fractions ranged from 17.2 to 39.7 kDa, while their humification index (HIX) varied from 0.49 to 1.21. HAp fractions had a higher content of aromatic structures compared to HAb fractions. Moreover, HAp fractions had a significantly higher content of phenolic OH groups (3.6 ± 0.5 mmol/g) versus HAb (3.1 ± 0.5 mmol/g). All HA fractions exhibited antioxidant activity in radical scavenging and electrochemical assays, and their EPR signal had a single line with g = 2.0035, which is consistent with semiquinone type radicals. Furthermore, the HIX was found to be important in determining the number of semiquinone-type free radicals in the HA structures. Overall, these data provide a molecular basis to explain at least part of the beneficial therapeutic properties of peat-derived HAs.
Peat humic acids are well known for their wide range of biological effects which can be attributed to the complex chemical structure of naturally occurring humic substances. One of the promising tools is an ontology-based quantitative analysis of the relationship between physical and chemical parameters describing a chemical structure of peat humic acids and their biological activity. This article demonstrates the feasibility of such an approach to estimate the antioxidant and cell protective properties of the peat humic acids. The structural parameters of the peat humic acids were studied by electronic, fluorescence, infrared, 13C-NMR spectroscopy, titrimetric analysis, elemental C,H,N, and O- analysis, and gel chromatography. Antioxidant and antiradical activities were assessed by physicochemical methods of analysis: electronic paramagnetic resonance, cathodic voltammetry, ABTS•+ scavenging, assay of DPPH radical-scavenging activity, assay of superoxide radical-scavenging activity, iron chelating activity, and scavenging of hydroxyl radicals. Cytoprotective activity was evaluated by the neutral red-based cytotoxicity test in 3T3-L1 cell culture in a wide range of concentrations. Assessment of intracellular ROS production was carried out using a 2,7-dichlorodihydrofluoresceindiacetate (DCFDA) fluorescent probe. Intracellular ROS production was induced using two common prooxidants (tert-butyl hydroperoxide, Fe2+ ions). We suggested an ontology-based model for the antioxidant and cytoprotective activity of humic acids based on experimental data and numerical models. This model establishes the way to further research on the biological effects of humic acids and provides a useful tool for numerical simulation of these effects. Remarkable antioxidant and cell protective activity of humic acids makes them a promising natural source of new pharmaceutical substances that feature a wide range of biological effects.
Aim. To assess the effect of iron-rich humic substances on hematological parameters in acute post-hemorrhagic and iron deficiency anemia.Materials and methods. Materials for the study were samples of iron-rich active pharmaceutical ingredients based on humic substances (Fe(III) hydroxide complexes with humic substances and polymaltose): HA-Fe3+, HA-PMFe3+, FA-Fe3+, and FA-PM-Fe3+. The anti-anemic activity of the substances was studied on 53 female Wistar rats of the conventional rat line in the model of acute posthemorrhagic and iron deficiency anemia. Anti-anemic activity was assessed by the hemoglobin level, erythrocyte count, hematocrit, and serum iron level.Results. The studied substances HA-Fe3+ and FA-Fe3+ are the most effective in correcting the consequences of both experimental acute posthemorrhagic anemia and iron deficiency anemia. Their effect is comparable to that of the positive control drug Ferrum Lek.Conclusion. Fe(III) hydroxide complexes stabilized by humic and fulvic acids exhibit anti-anemic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.