Inactivating mutations in the protein kinase LKB1 lead to a dominantly inherited cancer in humans termed Peutz-Jeghers syndrome. The role of LKB1 is unclear, and only one target for LKB1 has been identified in vivo [3]. AMP-activated protein kinase (AMPK) is the downstream component of a protein kinase cascade that plays a pivotal role in energy homeostasis. AMPK may have a role in protecting the body from metabolic diseases including type 2 diabetes, obesity, and cardiac hypertrophy. We previously reported the identification of three protein kinases (Elm1, Pak1, and Tos3 [9]) that lie upstream of Snf1, the yeast homologue of AMPK. LKB1 shares sequence similarity with Elm1, Pak1, and Tos3, and we demonstrated that LKB1 phosphorylates AMPK on the activation loop threonine (Thr172) within the catalytic subunit and activates AMPK in vitro [9]. Here, we have investigated whether LKB1 corresponds to the major AMPKK activity present in cell extracts. AMPKK purified from rat liver corresponds to LKB1, and blocking LKB1 activity in cells abolishes AMPK activation in response to different stimuli. These results identify a link between two protein kinases, previously thought to lie in unrelated, distinct pathways, that are associated with human diseases.
AMP-activated protein kinase (AMPK) is the downstream component of a kinase cascade that plays a pivotal role in energy homeostasis. Activation of AMPK requires phosphorylation of threonine 172 (T172) within the T loop region of the catalytic alpha subunit. Recently, LKB1 was shown to activate AMPK. Here we show that AMPK is also activated by Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK). Overexpression of CaMKKbeta in mammalian cells increases AMPK activity, whereas pharmacological inhibition of CaMKK, or downregulation of CaMKKbeta using RNA interference, almost completely abolishes AMPK activation. CaMKKbeta isolated from rat brain or expressed in E. coli phosphorylates and activates AMPK in vitro. In yeast, CaMKKbeta expression rescues a mutant strain lacking the three kinases upstream of Snf1, the yeast homolog of AMPK. These results demonstrate that AMPK is regulated by at least two upstream kinases and suggest that AMPK may play a role in Ca(2+)-mediated signal transduction pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.