Alzheimer disease (AD) is characterized by excessive deposition of amyloid β-peptides (Aβ peptides) in the brain. In the nonamyloidogenic pathway, the amyloid precursor protein (APP) is cleaved by the α-secretase within the Aβ peptide sequence. Proteinases of the ADAM family (a disintegrin and metalloproteinase) are the main candidates as physiologically relevant α-secretases, but early lethality of knockout animals prevented a detailed analysis in neuronal cells. To overcome this restriction, we have generated transgenic mice that overexpress either ADAM10 or a catalytically inactive ADAM10 mutant. In this report we show that a moderate neuronal overexpression of ADAM10 in mice transgenic for human APP [V717I] increased the secretion of the neurotrophic soluble α-secretase-released N-terminal APP domain (APPsα), reduced the formation of Aβ peptides, and prevented their deposition in plaques. Functionally, impaired long-term potentiation and cognitive deficits were alleviated. Expression of mutant catalytically inactive ADAM10 led to an enhancement of the number and size of amyloid plaques in the brains of double-transgenic mice. The results provide the first in vivo evidence for a proteinase of the ADAM family as an α-secretase of APP, reveal activation of ADAM10 as a promising therapeutic target, and support the hypothesis that a decrease in α-secretase activity contributes to the development of AD. 1456The
This study shows that the activity of neurons can trigger shedding of a protein, NG2, from the surface of oligodendrocyte precursor cells; this protein in turn modulates synaptic transmission, revealing a two-way conversation between neurons and glia.
Late-onset Alzheimer's disease is often connected with nutritional misbalance, such as enhanced cholesterol intake, deficiency in polyunsaturated fatty acids, or hypovitaminosis. The alpha-secretase ADAM10 has been found to be regulated by retinoic acid, the bioreactive metabolite of vitamin A. Here we show that retinoids induce gene expression of ADAM10 and alpha-secretase activity by nonpermissive retinoid acid receptor/retinoid X receptor (RAR/RXR) heterodimers, whereby alpha- and beta-isotypes of RAR play a major role. However, ligands of other RXR binding partners, such as the vitamin D receptor, do not stimulate alpha-secretase activity. On the basis of these findings, we examined the effect of synthetic retinoids and found a strong enhancement of nonamyloidogenic processing of the amyloid precursor protein by the vitamin A analog acitretin: it stimulated ADAM10 promoter activity with an EC(50) of 1.5 microM and led to an increase of mature ADAM10 protein that resulted in a two- to three-fold increase of the ratio between alpha- and beta-secretase activity in neuroblastoma cells. The alpha-secretase stimulation by acitretin was completely inhibited by the ADAM10-specific inhibitor GI254023X. Intracerebral injection of acitretin in APP/PS1-21 transgenic mice led to a reduction of Abeta(40) and Abeta(42). The results of this study may have clinical relevance because acitretin has been approved for the treatment of psoriasis since 1997 and found generally safe for long-term use in humans.
The regulation of physiological gut functions such as peristalsis or secretion of digestive enzymes by the central nervous system via the Nervus vagus is well known. Recent investigations highlight that pathological conditions of neurological or psychiatric disorders might directly interfere with the autonomous neuronal network of the gut - the enteric nervous system, or even derive from there. By using a murine Alzheimer's disease model, we investigated a potential influence of disease-associated changes on gastrointestinal properties. 5xFAD mice at three different ages were compared to wild type littermates in regard to metabolic parameters and enzymes of the gut by fluorimetric enzyme assay and western blotting. Overexpression of human amyloid-β protein precursor (AβPP) within the gut was assessed by qPCR and IHC; fecal microbiome analysis was conducted by 16SrRNA quantitation of selected phyla and species. While general composition of fecal samples, locomotion, and food consumption of male 5xFAD animals were not changed, we observed a reduced body weight occurring at early pathological stages. Human AβPP was not only expressed within the brain of these mice but also in gut tissue. Analysis of fecal proteins revealed a reduced trypsin amount in the 5xFAD model mice as compared to the wild type. In addition, we observed changes in fecal microbiota composition along with age. We therefore suggest that the presence of the mutated transgenes (AβPP and PS1), which are per se the basis for the genetic form of Alzheimer's disease in humans, directly interferes with gut function as shown here for the disease model mice.
The ADAM10 gene encodes a membrane-bound disintegrin-metalloproteinase, which, after overexpression in an Alzheimer disease (AD) mouse model, prevents amyloid pathology and improves long-term potentiation and memory. Because enhancing ADAM10 expression appears to be a reasonable approach for treatment of AD, we functionally analyzed the ADAM10 gene. Both human and mouse ADAM10 genes comprise approximately 160 kbp, are composed of 16 exons, and are evolutionarily highly conserved within 500 bp upstream of either translation initiation site. By using luciferase reporter assays, we demonstrate that nucleotides -2179 to -1 upstream of the human ADAM10 translation initiation site represent a functional TATA-less promoter. Within this region we identified and examined several single nucleotide polymorphisms, but did not detect significant differences in their appearance between AD and nondemented control subjects. By deletion analysis, site-directed mutagenesis, transcription factor overexpression and electrophoretic mobility shift assays, we identified nucleotides -508 to -300 as the core promoter and found Sp1, USF, and retinoic acid-responsive elements to modulate its activity. Finally, we identified vitamin A acid (RA) as an inducer of human ADAM10 promoter activity. This finding suggests that pharmacologic targeting of RA receptors may increase the expression of the alpha-secretase ADAM10 with beneficial effects on AD pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.