An aging population is driving brisk increases in the number of new MCC cases in the United States. This growing impact combined with the rapidly evolving therapeutic landscape warrants expanded awareness of MCC diagnosis and management.
Previous studies have reached conflicting conclusions regarding the proportion of Merkel cell carcinomas (MCCs) that contain the Merkel cell polyomavirus (MCPyV) and the clinical significance of tumor viral status. To address these controversies, we detected MCPyV large T antigen using immunohistochemistry with two distinct antibodies and MCPyV DNA using quantitative PCR. Tumors were called MCPyV-positive if two or more of these three assays indicated presence of this virus. A total of 53 of 282 (19%) MCC tumors in this cohort were virus-negative using this multimodal system. Immunohistochemistry with the CM2B4 antibody had the best overall performance (sensitivity = 0.882, specificity = 0.943) compared with the multimodal classification. Multivariate analysis including age, sex, and immunosuppression showed that, relative to MCC patients with virus-positive tumors, virus-negative MCC patients had significantly increased risk of disease progression (hazard ratio = 1.77, 95% confidence interval = 1.20–2.62) and death from MCC (hazard ratio = 1.85, 95% confidence interval = 1.19–2.89). We confirm that approximately 20% of MCCs are not driven by MCPyV and that such virus-negative MCCs, which can be quite reliably identified by immunohistochemistry using the CM2B4 antibody alone, represent a more aggressive subtype that warrants closer clinical follow-up.
Approximately one‐third of Merkel cell carcinoma (MCC) patients eventually develop distant metastatic disease. Little is known about whether the location of the primary lesion is predictive of initial distant metastatic site, or if survival likelihood differs depending on the metastatic site. Such data could inform imaging/surveillance practices and improve prognostic accuracy. Multivariate and competing‐risk analyses were performed on a cohort of 215 MCC patients with distant metastases, 31% of whom had two or more initial sites of distant metastasis. At time of initial distant metastasis in the 215 patients, metastatic sites (n = 305) included non‐regional lymph nodes (present in 41% of patients), skin/body wall (25%), liver (23%), bone (21%), pancreas (8%), lung (7%), and brain (5%). Among the 194 patients who presented with MCC limited to local or regional sites (stage I‐III) but who ultimately developed distant metastases, distant progression occurred in 49% by 1 year and in 80% by 2 years following initial diagnosis. Primary MCC locations differed in how likely they were to metastasize to specific organs/sites (P < .001). For example, liver metastases were far more likely from a head/neck primary (43% of 58 patients) versus a lower limb primary (5% of 39 patients; P < .0001). Skin‐only distant metastasis was associated with lower MCC‐specific mortality as compared to metastases in multiple organs/sites (HR 2.7; P = .003), in the liver (HR 2.1; P = .05), or in distant lymph nodes (HR 2.0; P = .045). These data reflect outcomes before PD1‐pathway inhibitor availability, which may positively impact survival. In conclusion, primary MCC location is associated with a pattern of distant spread, which may assist in optimizing surveillance. Because it is linked to survival, the site of initial distant metastasis should be considered when assessing prognosis.
Tumor-infiltrating CD8+ T cells are associated with improved survival of patients with Merkel cell carcinoma (MCC), an aggressive skin cancer causally linked to Merkel cell polyomavirus (MCPyV). However, CD8+ T-cell infiltration is robust in only 4%–18% of MCC tumors. We characterized the T-cell receptor (TCR) repertoire restricted to one prominent epitope of MCPyV (KLLEIAPNC, “KLL”) and assessed whether TCR diversity, tumor infiltration, or T-cell avidity correlated with clinical outcome. HLA-A*02:01/KLL tetramer+ CD8+ T cells from MCC patient peripheral blood mononuclear cells (PBMC) and tumor-infiltrating lymphocytes (TIL) were isolated via flow cytometry. TCRβ (TRB) sequencing was performed on tetramer+ cells from PBMC or TIL (n = 14) and matched tumors (n = 12). Functional avidity of T-cell clones was determined by IFNγ production. We identified KLL tetramer+ T cells in 14% of PBMC and 21% of TIL from MCC patients. TRB repertoires were diverse (mean of 12 and 29 clonotypes/patient in PBMC and TIL, respectively) and mostly private. An increased fraction of KLL-specific TIL (> 1.9%) was associated with significantly increased MCC-specific survival P = 0.0009). Forty-two distinct KLL-specific TCRα/β pairs were identified. T-cell clones from patients with improved MCC-specific outcomes were more avid (P < 0.05) and recognized an HLA-appropriate MCC cell line. T cells specific for a single MCPyV epitope display marked TCR diversity within and between patients. Intratumoral infiltration by MCPyV-specific T cells was associated with significantly improved MCC-specific survival, suggesting that augmenting the number or avidity of virus-specific T cells may have therapeutic benefit.
IMPORTANCE Merkel cell carcinoma (MCC) often behaves aggressively; however, disease-recurrence data are not captured in national databases, and it is unclear what proportion of patients with MCC experience a recurrence (estimates vary from 27%-77%). Stage-specific recurrence data that includes time from diagnosis would provide more precise prognostic information and contribute to risk-appropriate clinical surveillance. OBJECTIVE To estimate risk of stage-specific MCC recurrence and mortality over time since diagnosis. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study included 618 patients with MCC who were prospectively enrolled in a Seattle-based data repository between 2003 and 2019. Of these patients, 223 experienced a recurrence of MCC. Data analysis was performed July 2019 to November 2021. MAIN OUTCOMES AND MEASURESStage-specific recurrence and survival, as well as cumulative incidence and Kaplan-Meier analyses. RESULTS Among the 618 patients included in the analysis (median [range] age, 69 years; 227 [37%] female), the 5-year recurrence rate for MCC was 40%. Risk of recurrence in the first year was high (11% for patients with pathologic stage I, 33% for pathologic stage IIA/IIB, 30% for pathologic stage IIIA, 45% for pathologic stage IIIB, and 58% for pathologic stage IV), with 95% of recurrences occurring within the first 3 years. Median follow-up among living patients was 4.3 years. Beyond stage, 4 factors were associated with increased recurrence risk in univariable analyses: immunosuppression (hazard ratio [HR], 2.4; 95% CI, 1.7-3.3; P < .001), male sex (HR, 1.9; 95% CI, 1.4-2.5; P < .001), known primary lesion among patients with clinically detectable nodal disease (HR, 2.3; 95% CI, 1.4-4.0; P = .001), and older age (HR, 1.1; 95% CI, 1.0-1.3; P = .06 for each 10-year increase). Among 187 deaths in the cohort, 121 (65%) were due to MCC. The MCC-specific survival rate was strongly stage dependent (95% at 5 years for patients with pathologic stage I vs 41% for pathologic stage IV). Among patients presenting with stage I to II MCC, a local recurrence (17 arising within/adjacent to the primary tumor scar) did not appreciably diminish survival compared with patients who had no recurrence (85% vs 88% MCC-specific survival at 5 years). CONCLUSIONS AND RELEVANCEIn this cohort study, the MCC recurrence rate (approximately 40%) was notably different than that reported for invasive melanoma (approximately 19%), squamous cell carcinoma (approximately 5%-9%), or basal cell carcinoma (approximately 1%-2%) following definitive therapy. Because more than 90% of MCC recurrences arise within 3 years, it is appropriate to adjust surveillance intensity accordingly. Stage-and time-specific recurrence data can assist in appropriately focusing surveillance resources on patients and time intervals in which recurrence risk is highest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.