Using a combination of iterative structure-based design and an analysis of oral pharmacokinetics and antiviral activity, AG1343 (Viracept, nelfinavir mesylate), a nonpeptidic inhibitor of HIV-1 protease, was identified. AG1343 is a potent enzyme inhibitor (Ki = 2 nM) and antiviral agent (HIV-1 ED50 = 14 nM). An X-ray cocrystal structure of the enzyme-AG1343 complex reveals how the novel thiophenyl ether and phenol-amide substituents of the inhibitor interact with the S1 and S2 subsites of HIV-1 protease, respectively. In vivo studies indicate that AG1343 is well absorbed orally in a variety of species and possesses favorable pharmacokinetic properties in humans. AG1343 (Viracept) has recently been approved for marketing for the treatment of AIDS.
ABSTRACT:Previous results demonstrating homotropic activation of human UDP-glucuronosyltransferase (UGT) 1A1-catalyzed estradiol-3-glucuronidation led us to investigate the effects of 16 compounds on estradiol glucuronidation by human liver microsomes (HLM). In confirmation of previous work using alamethicin-treated HLM pooled from four livers, UGT1A1-catalyzed estradiol-3-glucuronidation demonstrated homotropic activation kinetics (S 50 ؍ 22 M, Hill coefficient, n ؍ 1.9) whereas estradiol-17-glucuronidation (catalyzed by other UGT enzymes) followed Michaelis-Menten kinetics (K m ؍ 7 M). Modulatory effects of the following compounds were investigated: bilirubin, eight flavonoids, 17␣-ethynylestradiol (17␣-EE), estriol, 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP), anthraflavic acid, retinoic acid, morphine, and ibuprofen. Although the classic UGT1A1 substrate bilirubin was a weak competitive inhibitor of estradiol-3-glucuronidation, the estrogens and anthraflavic acid activated or inhibited estradiol-3-glucuronidation dependent on substrate and effector concentrations. For example, at substrate concentrations of 5 and 10 M, estradiol-3-glucuronidation activity was stimulated by as much as 80% by low concentrations of 17␣-EE but was unaltered by flavanone. However, at higher substrate concentrations (25-100 M) estradiol-3-glucuronidation was inhibited by about 55% by both compounds. Anthraflavic acid and PhIP were also stimulators of estradiol 3-glucuronidation at low substrate concentrations. The most potent inhibitor of estradiol 3-glucuronidation was the flavonoid tangeretin. The UGT2B7 substrates morphine and ibuprofen had no effect on estradiol 3-glucuronidation, whereas retinoic acid was slightly inhibitory. Estradiol-17-glucuronidation was inhibited by 17␣-EE, estriol, and naringenin but was not activated by any compound. This study demonstrates that the interactions of substrates and inhibitors at the active site of UGT1A1 are complex, yielding both activation and competitive inhibition kinetics.
The pharmacokinetics and pharmacodynamics of oritavancin (LY333328), a glycopeptide antibiotic with concentration-dependent bactericidal activity against gram-positive pathogens, in a neutropenic-mouse thigh model of Staphylococcus aureus infection were studied. Plasma radioequivalent concentrations of oritavancin were determined by using [ 14 C]oritavancin at doses ranging from 0.5 to 20 mg/kg of body weight. Peak plasma radioequivalent concentrations after an intravenous dose were 7.27, 12.56, 69.29, and 228.83 g/ml for doses of 0.5, 1, 5, and 20 mg/kg, respectively. The maximum concentration of drug in serum (C max ) and the area under the concentration-time curve (AUC) increased linearly in proportion to the dose. Neither infection nor neutropenia was seen to affect the pharmacokinetics of oritavancin. Intravenous administration resulted in much higher concentrations in plasma than the concentrations obtained with subcutaneous administration. Single-dose dose-ranging studies suggested a sigmoid maximum effect (E max ) dose-response relationship, with a maximal effect evident at single doses exceeding 2 mg/kg. The oritavancin dose (stasis dose) that resulted in a 24-h colony count similar to the pretreatment count was 1.53 (standard error [SE], 0.35) mg/kg. The single oritavancin dose that resulted in 50% of maximal bacterial killing (ED 50 ) was 0.95 (SE, 0.20) mg/kg. Dose fractionation studies suggested that single doses of 0.5, 1, 2, 4, and 16 mg/kg appeared to have greater bactericidal efficacy than the same total dose subdivided and administered multiple times during the 24-h treatment period. When using an inhibitory E max model, C max appears to correlate better with bactericidal activity than do the time during which the concentration in plasma exceeds the MIC (T>MIC) and AUC. These data suggest that optimal oritavancin dosing strategies will require regimens that favor high C max concentrations rather than long periods during which unbound concentrations in plasma exceed the MIC.The recent emergence of enterococci and staphylococci with reduced susceptibility to vancomycin (16, 23) has highlighted the need for improved infection control measures (24) and the development of new antibiotic agents (20). Oritavancin, a semisynthetic glycopeptide derived from the N alkylation of the naturally occurring glycopeptide LY264826 (A82846B) (7), has a broad spectrum of activity against gram-positive cocci (25), including glycopeptide-resistant enterococci and Staphylococcus aureus strains with intermediate susceptibility to glycopeptides (1, 18). Oritavancin also displays several in vitro properties that distinguish it from vancomycin, including in vitro concentration-dependent bactericidal activity against S. aureus and enterococci (6,18,26,27) , Berlin, Germany, 1999, abstr. P191, 1999.The present study uses a neutropenic-mouse thigh model of S. aureus infection to characterize oritavancin pharmacokinetics in mice and explore the relationship between relevant pharmacodynamic indices (maximum concentration of...
To assess the safety, tolerability, and pharmacology of LY3023703, a microsomal prostaglandin E synthase 1 (mPGES1) inhibitor, a multiple ascending dose study was conducted. Forty-eight subjects received LY3023703, celecoxib (400 mg), or placebo once daily for 28 days. Compared with placebo, LY3023703 inhibited ex vivo lipopolysaccharide-stimulated prostaglandin E2 (PGE2 ) synthesis 91% and 97% on days 1 and 28, respectively, after 30-mg dosing, comparable to celecoxib's effect (82% inhibition compared to placebo). Unlike celecoxib, which also inhibited prostacyclin synthesis by 44%, LY3023703 demonstrated a maximal increase in prostacyclin synthesis of 115%. Transient elevations of serum aminotransferase were observed in one subject after 30-mg LY3023703 dosing (10× upper limit of normal (ULN)), and one subject after 15-mg dosing (about 1.5× ULN). Results from this study suggest that mPGES1 inhibits inducible PGE synthesis without suppressing prostacyclin generation and presents a novel target for inflammatory pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.