To chiroptically characterize the enantiomers of omeprazole and some structurally related benzimidazoles with circular dichroism (CD), preparative chiral liquid chromatography was utilized for the isolation of the pure enantiomers. A limited analytical column screen was performed identifying Kromasil-CHI-TBB and the amylose-based phases Chiralpak AD and AS as possible chiral stationary phases (CSPs) for the preparative scale separation of the enantiomers of the different benzimidazoles. Optimization of the chromatographic conditions with respect to retention, enantioseparation, and resolution was achieved by variation of the mobile phase constituents as well as of temperature. Because of the lability of the compound in slightly acidic media, supercritical fluid chromatography (SFC) could not be applied for a preparative scale separation of the enantiomers. The separation of omeprazole was optimized to give high throughput (2.6 kg racemate/kg CSP/day) and high enantiomeric excess of the obtained isomers. The absolute configurations of the pure enantiomers of rabeprazole, lansoprazole, and pantoprazole were determined from the strong correlation to the CD spectrum of (+)-(R)-omeprazole. For all the compounds, the (+)-enantiomers displayed similar chiroptical features as (+)-(R)-omeprazole and were thus assigned the (R)- configuration. Elution order of the optical isomers was monitored by injecting racemic solutions spiked with one of the isomers and also by an on-line laser polarimeter. Both the type of CSP and also the mobile phase constituents had a strong effect on elution order of the enantiomers.
In
one of our drug development projects, we identified potent KRASG12C inhibitors for treatment of cancer. For our early preclinical
studies, we needed a strategy to enable supply of two candidates in
a cost-effective and productive manner. The active pharmaceutical
ingredients (APIs) were structurally complex and were initially obtained
via long linear sequences resulting in time-consuming manufactures.
In addition, both two candidates comprised a biaryl fragment with
hindered rotation along the chiral axis. As a result, a pair of stable
atropisomers was generated for each candidate. With special attention
to the chromatographic challenges for the atropisomer separation and
for the API purification, this article describes our initial efforts
to develop synthetic routes that were amenable for multigram synthesis
of our two drug candidates. In particular, the consequences of implementing
a key Suzuki reaction late or early in the sequence are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.