This paper describes a method of integrating decentralized energy systems at neighbourhood scale. The method is based on the energy hub concept, which describes and manages the relation between input and output energy flows and thus can be used to optimize energy consumption. The original energy hub concept is further developed to include decentralized and local energy technologies such as photovoltaics, biomass, or small hydro power, together with district heating systems, building and district conversion and storage technologies at neighbourhood level. Additionally, input from a building simulation tool for evaluating time-dependent buildings energy demand is included in the method. The proposed approach can be used to evaluate and size urban energy systems according to their energy-autonomy, economic and ecological performance. The advantage is that the energy supply systems and local energy storage systems can be evaluated in a combined way at district scale. The suggested method allows to lower peaks in energy demands of neighbourhoods on the electrical grid and to reduce the overall consumption. The developed method is finally applied on a case study for which future energy scenarios of different implementation scale are suggested. The area is located in a village in the mountains and contains 29 buildings. Suggested scenarios include decentralized and local renewable energy sources and district and small
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.