Komagataella phaffii yeast plays a prominent role in modern biotechnology as a recombinant protein producer. For efficient use of this yeast, it is essential to study the effects of different media components on its growth and gene expression. We investigated the effect of methionine on gene expression in K. phaffii cells using RNA-seq analysis. Several gene groups exhibited altered expression when K. phaffii cells were cultured in a medium with methanol and methionine, compared to a medium without this amino acid. Methionine primarily affects the expression of genes involved in its biosynthesis, fatty acid metabolism, and methanol utilization. The AOX1 gene promoter, which is widely used for heterologous expression in K. phaffii, is downregulated in methionine-containing media. Despite great progress in the development of K. phaffii strain engineering techniques, a sensitive adjustment of cultivation conditions is required to achieve a high yield of the target product. The revealed effect of methionine on K. phaffii gene expression is important for optimizing media recipes and cultivation strategies aimed at maximizing the efficiency of recombinant product synthesis.
The choice of a model organism in biology is based on various factors, such as practical significance and ease of manipulation. Saccharomyces cerevisiae yeast is one of the most widely used and well-studied eukaryotic models. However, developments in NGS, proteomics, metabolomics and gene editing methods allow other species to become the object of fundamental research. A good example of such emerging model organisms is the yeast Komagataella phaffii. K. phaffii belongs to a unique group of eukaryotic methylotrophs that can use methanol as the sole source of carbon and energy. On the other hand, K. phaffii seems to be more characteristic of the common ancient yeast ancestors than the rapidly evolving S. cerevisiae. Comparative studies between S. cerevisiae and K. phaffii will shed light on the mechanisms of evolution of metabolic pathways and regulatory systems. Such studies are accelerated by the practical importance of K. phaffii as a common microbial production host in biotechnology. In our studies, we demonstrate that some amino acids greatly affect gene expression in K. phaffii [1]. Transcriptome analysis revealed drastic changes in gene expression when proline was present in the media. About 18.9% of total protein-coding genes were differentially expressed, including genes involved in methanol utilization [2]. Our results show that the unique methanol metabolism pathway is regulated not only by methanol, but also by other carbon sources. Therefore, our findings suggest that the regulation of methanol metabolism pathway is integrated into other cellular regulatory networks. Methanol metabolism, acquired by K. phaffii during evolution, is tightly associated with nitrogen an amino acid metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.