Enteric bacterial pathogens cause food borne disease, which constitutes an enormous economic and health burden. Enterohemorrhagic Escherichia coli (EHEC) causes a severe bloody diarrhea following transmission to humans through various means, including contaminated beef and vegetable products, water, or through contact with animals. EHEC also causes a potentially fatal kidney disease (hemolytic uremic syndrome) for which there is no effective treatment or prophylaxis. EHEC and other enteric pathogens (e.g., enteropathogenic E. coli (EPEC), Salmonella, Shigella, Yersinia) utilize a type III secretion system (T3SS) to inject virulence proteins (effectors) into host cells. While it is known that T3SS effectors subvert host cell function to promote diarrheal disease and bacterial transmission, in many cases, the mechanisms by which these effectors bind to host proteins and disrupt the normal function of intestinal epithelial cells have not been completely characterized. In this study, we present evidence that the E. coli O157:H7 nleH1 and nleH2 genes encode T3SS effectors that bind to the human ribosomal protein S3 (RPS3), a subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcriptional complexes. NleH1 and NleH2 co-localized with RPS3 in the cytoplasm, but not in cell nuclei. The N-terminal region of both NleH1 and NleH2 was required for binding to the N-terminus of RPS3. NleH1 and NleH2 are autophosphorylated Ser/Thr protein kinases, but their binding to RPS3 is independent of kinase activity. NleH1, but not NleH2, reduced the nuclear abundance of RPS3 without altering the p50 or p65 NF-κB subunits or affecting the phosphorylation state or abundance of the inhibitory NF-κB chaperone IκBα NleH1 repressed the transcription of a RPS3/NF-κB-dependent reporter plasmid, but did not inhibit the transcription of RPS3-independent reporters. In contrast, NleH2 stimulated RPS3-dependent transcription, as well as an AP-1-dependent reporter. We identified a region of NleH1 (N40-K45) that is at least partially responsible for the inhibitory activity of NleH1 toward RPS3. Deleting nleH1 from E. coli O157:H7 produced a hypervirulent phenotype in a gnotobiotic piglet model of Shiga toxin-producing E. coli infection. We suggest that NleH may disrupt host innate immune responses by binding to a cofactor of host transcriptional complexes.
Two hundred forty Angus crossbred steers were used to determine the influence of feeding various quantities of wet and dry distillers grains to finishing steers on carcass characteristics, meat quality, retail-case life of ground beef, and fatty acid profile of LM. Three replications of 5 dietary treatments were randomly applied to 15 pens in each of 2 yr. A finishing diet containing dry-rolled corn, soybean meal, and alfalfa hay was fed as the control diet. Wet distillers grains with solubles (DGS) or dry DGS was added to the finishing diets at either 20.0 or 40.0% of the dietary DM to replace all soybean meal and part of the cracked corn in treatment diets. Carcasses of steers fed DGS had greater (P < 0.05) fat thickness (1.47 vs. 1.28 cm), greater (P < 0.05) USDA yield grades (3.23 vs. 2.94), and smaller (P < 0.05) percentage of yield grades 1 and 2 (41.1 vs. 60.4%) than carcasses of steers fed the control diet. Longissimus muscle from steers fed dry DGS had greater (P < 0.05) ultimate pH values (5.52 vs. 5.49) than LM from steers fed wet DGS. Ground beef from steers fed DGS had greater (P < 0.05) concentrations of α-tocopherol (1.77 vs. 1.43 μg/g) than ground beef from steers fed the control diet. Ground beef from steers fed 40% DGS had greater (P < 0.05) thiobarbituric acid-reactive substances (2.84 vs. 2.13 mg/kg) on d 2 of retail display than ground beef from steers fed 20% DGS. Longissimus muscle of steers fed DGS had less (P < 0.05) C17:0 and more (P < 0.05) C18:0, C18:1t, C16:1c9, C18:2c9c12 (where t is trans and c is cis), and total PUFA than LM of steers fed the control diet. Feedlot steers fed DGS may need to be marketed earlier than normal to avoid excess external fat and carcasses with a greater numerical yield grade. These data suggest feeding DGS to finishing steers will have no adverse or beneficial effects on glycolytic variables (dark cutters), retail display life of ground beef, or meat tenderness. However, beef from cattle finished on diets containing DGS will likely have a greater proportion of PUFA and therefore may be more susceptible to oxidative rancidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.