BackgroundFoot morphology has received increasing attention from both biomechanics researches and footwear manufacturers. Usually, the morphology of the foot is quantified by 2D footprints. However, footprint quantification ignores the foot’s vertical dimension and hence, does not allow accurate quantification of complex 3D foot shape.MethodsThe shape variation of healthy 3D feet in a population of 31 adult women and 31 adult men who live in Belgium was studied using geometric morphometric methods. The effect of different factors such as sex, age, shoe size, frequency of sport activity, Body Mass Index (BMI), foot asymmetry, and foot loading on foot shape was investigated. Correlation between these factors and foot shape was examined using multivariate linear regression.ResultsThe complex nature of a foot’s 3D shape leads to high variability in healthy populations. After normalizing for scale, the major axes of variation in foot morphology are (in order of decreasing variance): arch height, combined ball width and inter-toe distance, global foot width, hallux bone orientation (valgus-varus), foot type (e.g. Egyptian, Greek), and midfoot width. These first six modes of variation capture 92.59% of the total shape variation. Higher BMI results in increased ankle width, Achilles tendon width, heel width and a thicker forefoot along the dorsoplantar axis. Age was found to be associated with heel width, Achilles tendon width, toe height and hallux orientation. A bigger shoe size was found to be associated with a narrow Achilles tendon, a hallux varus, a narrow heel, heel expansion along the posterior direction, and a lower arch compared to smaller shoe size. Sex was found to be associated with differences in ankle width, Achilles tendon width, and heel width. Frequency of sport activity was associated with Achilles tendon width and toe height.ConclusionA detailed analysis of the 3D foot shape, allowed by geometric morphometrics, provides insights in foot variations in three dimensions that can not be obtained from 2D footprints. These insights could be applied in various scientific disciplines, including orthotics and shoe design.
About 20% of the population suffer from disabling foot or ankle pain that require the use of foot orthotics. Traditionally, those foot orthotics are designed manually, but digital procedures are desired to provide a faster, more objective, and more reliable workflow. In this study, we introduce a method for detecting shape abnormalities in feet for the purposes of pathology diagnosis and orthotic design. The proposed method consists of two phases. In the training phase, a statistical 3D foot model (based on 42 healthy subjects) is built. In the test phase, the landmarks of a new 3D foot scan are compared to the trained model. A landmark is detected as an outlier if it is in the extreme ranges. This testing process is repeated at all landmarks to identify all abnormal foot regions. Preliminary results show that, when testing a foot of a known pathology (hallux valgus, heel spur, foot pronation), we are able to detect abnormal regions accurately. We also examined the effect of using rigid or similarity-based alignment during 3D model building and abnormality detection. We show that our proposed method is a faster and a more objective approach than traditional approaches for abnormality detection of the foot. As such, this method may prove useful in the medical diagnosis of foot pathologies and in automated orthotic design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.