BackgroundTo describe treatment practices for juvenile proliferative lupus nephritis (LN) class III and IV of pediatric rheumatologists and nephrologists in Germany and Austria in preparation for a treat-to-target treatment protocol in LN.MethodsSurvey study by members of the Society for Pediatric and Adolescent Rheumatology (GKJR) and the German Society for Pediatric Nephrology (GPN) on diagnostics and (concomitant) therapy of LN.ResultsFifty-eight physicians completed the survey. Overall, there was a considerable heterogeneity regarding the suggested diagnostics and management of juvenile proliferative LN. Increased urinary protein excretion, either assessed by 24 h urine collection or spot urine (protein-creatinine ratio), and reduced estimated glomerular filtration rate were specified as important parameters for indication of kidney biopsy to diagnose proliferative LN and monitoring of therapy. Corticosteroids were generally proposed for induction and maintenance therapy, most often in conjunction with either mycophenolate mofetil (MMF) or cyclophosphamide (CP) as steroid-sparing immunosuppressants. MMF was clearly preferred over CP for induction therapy of LN class III, whereas CP and MMF were equally proposed for LN class IV. MMF was most often recommended for maintenance therapy in conjunction with oral corticosteroids and continued for at least 3 years and 1 year, respectively, after remission. Hydroxychloroquine was widely accepted as a concomitant measure followed by renin-angiotensin system inhibitors in cases of arterial hypertension and/or proteinuria.ConclusionThe majority of pediatric rheumatologists and nephrologists in Germany and Austria propose the use of corticosteroids, most often in combination with either MMF or CP, for treatment of proliferative LN in children. The considerable heterogeneity of responses supports the need for a treat-to-target protocol for juvenile proliferative LN between pediatric rheumatologists and nephrologists.
Background: CD4+ T cells critically contribute to the initiation and perturbation of inflammation. When CD4+ T cells enter inflamed tissues, they adapt to hypoxia and oxidative stress conditions, and to a reduction in nutrients. We aimed to investigate how this distinct environment regulates T cell responses within the inflamed joints of patients with childhood rheumatism (JIA) by analyzing the behavior of NRF2—the key regulator of the anti-oxidative stress response—and its signaling pathways. Methods: Flow cytometry and quantitative RT-PCR were used to perform metabolic profiling of T cells and to measure the production of inflammatory cytokines. Loss of function analyses were carried out by means of siRNA transfection experiments. NRF2 activation was induced by treatment with 4-octyl-Itaconate (4-OI). Results: Flow cytometry analyses revealed a high metabolic status in CD4+ T cells taken from synovial fluid (SF) with greater mitochondrial mass, and increased glucose and fatty acid uptake. This resulted in a heightened oxidative status of SF CD4+ T cells. Despite raised ROS levels, expression of NRF2 and its target gene NQO1 were lower in CD4+ T cells from SF than in those from blood. Indeed, NRF2 activation of CD4+ T cells downregulated oxidative stress markers, altered the metabolic phenotype and reduced secretion of IFN-γ. Conclusion: NRF2 could be a potential regulator in CD4+ T cells during chronic inflammation and could instigate a drift toward disease progression or regression, depending on the inflammatory environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.