Background
Although cardiac troponin I (cTnI) and troponin T (cTnT) form a complex in the human myocardium and bind to thin filaments in the sarcomere, cTnI often reaches higher concentrations and returns to normal concentrations faster than cTnT in patients with acute myocardial infarction (MI).
Methods
We compared the overall clearance of cTnT and cTnI in rats and in patients with heart failure and examined the release of cTnT and cTnI from damaged human cardiac tissue in vitro.
Results
Ground rat heart tissue was injected into the quadriceps muscle in rats to simulate myocardial damage with a defined onset. cTnT and cTnI peaked at the same time after injection. cTnI returned to baseline concentrations after 54 h, compared with 168 h for cTnT. There was no difference in the rate of clearance of solubilized cTnT or cTnI after intravenous or intramuscular injection. Renal clearance of cTnT and cTnI was similar in 7 heart failure patients. cTnI was degraded and released faster and reached higher concentrations than cTnT when human cardiac tissue was incubated in 37°C plasma.
Conclusion
Once cTnI and cTnT are released to the circulation, there seems to be no difference in clearance. However, cTnI is degraded and released faster than cTnT from necrotic cardiac tissue. Faster degradation and release may be the main reason why cTnI reaches higher peak concentrations and returns to normal concentrations faster in patients with MI.
Hospitalized patients who die from Covid-19 often have pre-existing heart disease. The SARS-CoV-2 virus is dependent on the ACE2 receptor to be able to infect cells. It is possible that the strong link between cardiovascular comorbidities and a poor outcome following a SARS-CoV-2 infection is sometimes due to viral myocarditis. The aim was to examine the expression of ACE2 in normal hearts and hearts from patients with terminal heart failure. The ACE2 expression was measured by global quantitative proteomics and RT-qPCR in left ventricular (LV) tissue from explanted hearts. Immunohistochemistry was used to examine ACE2 expression in cardiomyocytes, fibroblasts and endothelial cells. In total, tissue from 14 organ donors and 11 patients with terminal heart failure were included. ACE2 expression was 2.6 times higher in 4 hearts from patients with terminal heart failure compared with 6 healthy donor hearts. The results were confirmed by immunohistochemistry where more than half of cardiomyocytes or fibroblasts showed expression of ACE2 in hearts from patients with terminal heart failure. In healthy donor hearts ACE2 was not expressed or found in few fibroblasts. A small subpopulation of endothelial cells expressed ACE2 in both groups. Upregulated ACE2 expression in cardiomyocytes may increase the risk of SARS-CoV-2 myocarditis in patients with heart failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.