Anticoagulant compounds, i.e., derivatives of either 4-hydroxycoumarin (e.g., warfarin, bromadiolone) or indane-1,3-dione (e.g., diphacinone, chlorophacinone), have been in worldwide use as rodenticides for Ͼ50 years. These compounds inhibit blood coagulation by repression of the vitamin K reductase reaction (VKOR). Anticoagulant-resistant rodent populations have been reported from many countries and pose a considerable problem for pest control. Resistance is transmitted as an autosomal dominant trait although, until recently, the basic genetic mutation was unknown. Here, we report on the identification of eight different mutations in the VKORC1 gene in resistant laboratory strains of brown rats and house mice and in wild-caught brown rats from various locations in Europe with five of these mutations affecting only two amino acids (Tyr139Cys, Tyr139Ser, Tyr139Phe and Leu128Gln, Leu128Ser). By recombinant expression of VKORC1 constructs in HEK293 cells we demonstrate that mutations at Tyr139 confer resistance to warfarin at variable degrees while the other mutations, in addition, dramatically reduce VKOR activity. Our data strongly argue for at least seven independent mutation events in brown rats and two in mice. They suggest that mutations in VKORC1 are the genetic basis of anticoagulant resistance in wild populations of rodents, although the mutations alone do not explain all aspects of resistance that have been reported. We hypothesize that these mutations, apart from generating structural changes in the VKORC1 protein, may induce compensatory mechanisms to maintain blood clotting. Our findings provide the basis for a DNA-based field monitoring of anticoagulant resistance in rodents.
Objectives: A previously unidentified mecA homologue, mecA LGA251 , has recently been described in methicillinresistant Staphylococcus aureus (MRSA) from humans and dairy cattle. The origin and epidemiology of this novel homologue are unclear. The objective of this study was to provide basic descriptive information of MRSA isolates harbouring mecA LGA251 from a range of host animal species.Methods: A number of S. aureus isolates from historical animal isolate collections were chosen for investigation based on their similarity to known mecA LGA251 MRSA isolates. The presence of mecA LGA251 was determined using a multiplex PCR and antimicrobial susceptibility testing performed by disc diffusion.Results: MRSA harbouring mecA LGA251 were found in isolates from a domestic dog, brown rats, a rabbit, a common seal, sheep and a chaffinch. All of the isolates were phenotypically MRSA, although this depended on which test was used; some isolates would be considered susceptible with certain assays. All isolates were susceptible to linezolid, rifampicin, kanamycin, norfloxacin, erythromycin, clindamycin, fusidic acid, tetracycline, trimethoprim/sulfamethoxazole and mupirocin. Five multilocus sequence types were represented (2273, 130, 425, 1764 and 1245) and six spa types (t208, t6293, t742, t6594, t7914 and t843).
Conclusions:The discovery of MRSA isolates possessing mecA LGA251 from a diverse range of host species, including different taxonomic classes, has important implications for the diagnosis of MRSA in these species and our understanding of the epidemiology of this novel mecA homologue.
Seoul hantavirus (SEOV), carried by Rattus rattus (black rat) and R. norvegicus (Norway, brown rat), was reported to circulate as well as cause HFRS cases in Asia. As Rattus sp. are present worldwide, SEOV has the potential to cause human disease worldwide. In Europe however, only SEOV prevalence in rats from France was reported and no confirmed cases of SEOV infection were published. We here report genetic and serological evidence for the presence of SEOV virus in brown rat populations in Belgium. We also serologically screened an at-risk group that was in contact with R. norvegicus on a daily basis and found no evidence for SEOV infection.
Hantaviruses (genus Hantavirus, family Bunyaviridae) cause hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus (cardio)pulmonary syndrome (HCPS) in the Americas. So far, in Europe, four pathogenic hantaviruses have been found, often in co-circulation: Puumala virus (PUUV), Dobrava virus (DOBV), Saaremaa virus (SAAV), and Seoul virus (SEOV). Of those, only PUUV was found in Belgium. Recently, in our search for hantaviruses in the Flanders region of Belgium we collected genetic and serological evidence for the presence of SEOV virus in local brown rats. In this article, the results of (phylo)genetic analysis of wild-type SEOV strain from the Flanders are presented. The analysis based on the complete S segment sequence and also partial M- and L-segment sequences revealed that the Belgian SEOV strain was related most closely to strains from France, Indonesia, Japan, Singapore, Cambodia (those associated with the species Rattus norvegicus) and Vietnam. Such a clustering was in perfect agreement with the results of direct sequence comparison and suggested the same evolutionary history for all three genome segments of the Belgian SEOV strain (i.e., no reassortment of genome segments). So far, SEOV has been found in two European countries, France and Belgium, and there is every reason to believe that the area of the virus distribution in Europe is not restricted to those countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.