IronArc is a newly developed technology for pig iron production with the aim to reduce the CO2 emission and energy consumption, compared to a conventional blast furnace route. In order to understand the fluid flow and stirring in the IronArc reactor, water modeling experiments are performed. Specifically, a down scaled acrylic plastic model of the IronArc pilot plant reactor is used to investigate the mixing phenomena and gas penetration depth in the liquid bath. The mixing time is determined by measuring the conductivity in the bath, after a sodium chloride solution is added. Moreover, the penetration depth is determined by analyzing the pictures obtained during the experimental process by using both a video camera and a high speed camera. The results show that the bath movements are strong and that a circular movement of the surface is present. The mixing in the model for the flow rate of 282 NL min−1 is fast. Specifically, the average mixing times are 7.6 and 10.2 s for a 95% and a 99% homogenization degree, respectively. This is 15% and 18% (per degree of homogenization) faster compared to the case when using 3 gas inlets and the same flow rate.
In the Swedish steel industry, much work is put on further increasing the recycling and use of residual materials. However, blast furnace sludge is one residual which currently, despite its valuable contents of iron and carbon, is put on landfill or long-term storage due to its zinc content. Linde has developed the OXYFINES technique which is suitable for upgrading of fine particulate and zinc containing materials. The material is fed to the OXYFINES burner whereby its zinc content is vaporised to a generated dust phase whereas other non-gasifiable contents, such as iron, forms an oxidic sinter phase in the bottom of the reactor. The technique has proven a high degree of zinc separation, is relatively flexible and straightforward, and does not require sludge pre-treatment such as drying. Pilot set-up and trials, using the OXYFINES technique, were performed at Swerim’s research facility. In the trials, the effects from altering different process parameters were tested aiming to develop an optimal concept for upgrading the blast furnace sludge. The pilot trials’ results showed the required process settings to attain a high degree of zinc separation from the sludge, and to generate an iron oxide product, suitable for straightforward charging to the steelmaking process.
Integrating novel technology in production systems for the upgrading and further use of residual materials is a potential way of improving the resource efficiency. Assessing technology integration prospects, by performing system analysis, assists in the forecasting of effects and opportunities for different concepts. Based on pilot trials results, using Linde’s OXYFINES technique for upgrading zinc containing blast furnace sludge, a system analysis was performed on the prospects of integrating an OXYFINES concept in an iron and steel production route. The calculations were made based on one option for a full-scale OXYFINES concept for indicating the effects on the blast furnace zinc load, raw material consumption, energy use and carbon dioxide emissions from using the OXYFINES sinter product as a raw material in blast furnace ironmaking or in the basic oxygen furnace steelmaking. The summarised system analysis results showed that the most advantageous metallurgical, environmental, and economic potential was realised in the calculations of using the sinter in the basic oxygen furnace. However, the sinter was found as well suitable for use in the blast furnace when considering mainly the metallurgical and the economic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.