Abstract. We revisit the deterministic graphical games of Washburn. A deterministic graphical game can be described as a simple stochastic game (a notion due to Anne Condon), except that we allow arbitrary real payoffs but disallow moves of chance. We study the complexity of solving deterministic graphical games and obtain an almost-linear time comparison-based algorithm for computing an equilibrium of such a game. The existence of a linear time comparison-based algorithm remains an open problem.
Abstract. We consider approximating the minmax value of a multiplayer game in strategic form. Tightening recent bounds by Borgs et al., we observe that approximating the value with a precision of log n digits (for any constant > 0) is NP-hard, where n is the size of the game. On the other hand, approximating the value with a precision of c log log n digits (for any constant c ≥ 1) can be done in quasi-polynomial time. We consider the parameterized complexity of the problem, with the parameter being the number of pure strategies k of the player for which the minmax value is computed. We show that if there are three players, k = 2 and there are only two possible rational payoffs, the minmax value is a rational number and can be computed exactly in linear time. In the general case, we show that the value can be approximated with any polynomial number of digits of accuracy in time n O(k) . On the other hand, we show that minmax value approximation is W[1]-hard and hence not likely to be fixed parameter tractable. Concretely, we show that if kClique requires time n Ω(k) then so does minmax value computation.
Two standard algorithms for approximately solving two-player zerosum concurrent reachability games are value iteration and strategy iteration. We prove upper and lower bounds of 2 m Θ(N ) on the worst case number of iterations needed by both of these algorithms for providing non-trivial approximations to the value of a game with N non-terminal positions and m actions for each player in each position. In particular, both algorithms have doubly-exponential complexity. Even when the game given as input has only one non-terminal position, we prove an exponential lower bound on the worst case number of iterations needed to provide non-trivial approximations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.