The purpose of the present investigation was to identify muscle damage, inflammatory response and oxidative stress blood markers in athletes undertaking the ultra-endurance MultiSport Brazil race. Eleven well-trained male athletes (34.3 ± 3.1 years, 74.0 ± 7.6 kg; 172.2 ± 5.1 cm) participated in the study and performed the race, which consisted of about 90 km of alternating off-road running, mountain biking and kayaking. Twelve hours before and up to 15 minutes after the race a 10 mL blood sample was drawn in order to measure the following parameters: lactate dehydrogenase and creatine kinase activities, lipid peroxidation, catalase activity, protein carbonylation, respiratory chain complexes I, II and IV activities, oxygen consumption and neopterin concentrations. After the race, plasma lactate dehydrogenase and creatine kinase activities were significantly increased. Erythrocyte TBA-RS levels and plasma protein carbonylation were markedly augmented in post-race samples. Additionally, mitochondrial complex II activity and oxygen consumption in post-race platelet-rich plasma were also increased. These altered biochemical parameters were accompanied by increased plasma neopterin levels. The ultra-endurance event provoked systemic inflammation (increased neopterin) accompanied by marked oxidative stress, likely by increasing oxidative metabolism (increased oxidative mitochondrial function). This might be advantageous during prolonged exercise, mainly for efficient substrate oxidation at the mitochondrial level, even when tissue damage is induced.
We hypothesized that prior exercise would attenuate the muscle fatigue accompanied by oxygen uptake slow-component (V̇O2SC) behavior during a subsequent very-heavy (VH)-intensity cycling exercise. Thirteen healthy male subjects performed tests to determine the critical power (CP) and the fixed amount of work above CP ([Formula: see text]) and performed 6 square-wave bouts until 3 or 8 min, each at a work rate set to deplete 70% [Formula: see text] in 8 min, with a maximal isokinetic effort before and after the conditions without (VHCON) and with prior exercise (VHEXP), to measure the cycling peak torque decrement. The V̇O2SC magnitude at 3 min (VHCON = 0.280 ± 0.234, VHEXP = 0.116 ± 0.109 L·min−1; p = 0.04) and the V̇O2SC trajectory were significantly lower for VHEXP (VHCON = 0.108 ± 0.042, VHEXP = 0.063 ± 0.031 L·min−2; p < 0.01), leading to a V̇O2SC magnitude at the eighth minute that was significantly lower than VHCON (VHCON = 0.626 ± 0.296 L·min−1, VHEXP = 0.337 ± 0.179; p < 0.01). Conversely, peak torque progressively decreased from pre-exercise to 3 min (Δtorque = 21.5 ± 7.7 vs. 19.6 ± 9.2 Nm) and to 8 min (Δtorque = 29.4 ± 15.8 vs. 27.5 ± 12.0 Nm) at VHCON and VHEXP, respectively, without significant differences between conditions. Regardless of the condition, there was a significant relationship between Δtorque and the V̇O2SC (R2: VHCON = 0.23, VHEXP = 0.25; p = 0.01). Considering that “priming” effects on the V̇O2SC were not accompanied by the muscle force behavior, these findings do not support the hypothesis of a “causal” relationship between the time-course of muscle fatigue and V̇O2SC.
The maximal lactate steady state (MLSS) represents a submaximal intensity that may be important in prescribing both continuous and interval endurance training. This study compared time to exhaustion (TTE) at MLSS in continuous and intermittent (i.e., with pauses) exercise, investigating whether physiological variables differ between these exercise modes. Fourteen trained male cyclists volunteered for this investigation and performed an incremental test, several 30-min tests to determine two MLSS intensities (continuous and discontinuous protocol), and two randomized tests until exhaustion at MLSS intensities on a cycle ergometer. The intermittent or discontinuous protocol was performed using 5 min of cycling, with an interval of 1 min of passive rest. TTE at intermittent MLSS was 24% longer than TTE at continuous exercise (67.8 ± 14.3 min vs. 54.7 ± 10.9 min; p < 0.05; effect sizes = 1.04), even though the absolute power output of intermittent MLSS was higher than continuous (268 ± 29 W vs. 251 ± 29 W; p < 0.05). Additionally, the total mechanical work done was significantly lower at continuous exercise than at intermittent exercise. Likewise, regarding cardiorespiratory and metabolic variables, we observed greater responses during intermittent exercise than during continuous exercise at MLSS. Thus, for endurance training prescription, this is an important finding to apply in extensive interval sessions at MLSS. This result suggests that interval sessions at discontinuous MLSS should be used instead of continuous MLSS, as discontinuous MLSS allows for a larger amount of total work during the exhaustion trial.
IntroductionThe characterization of the hyperbolic power-time (P-t lim) relationship using a two-parameter model implies that exercise tolerance above the asymptote (Critical Power; CP), i.e. within the severe intensity domain, is determined by the curvature (W’) of the relationship.PurposesThe purposes of this study were (1) to test whether the amount of work above CP (W>CP) remains constant for varied work rate experiments of high volatility change and (2) to ascertain whether W’ determines exercise tolerance within the severe intensity domain.MethodsFollowing estimation of CP (208 ± 19 W) and W’ (21.4 ± 4.2 kJ), 14 male participants (age: 26 ± 3; peak : 3708 ± 389 ml.min-1) performed two experimental trials where the work rate was initially set to exhaust 70% of W’ in 3 (‘THREE’) or 10 minutes (‘TEN’) before being subsequently dropped to CP plus 10 W.Results W>CP for TEN (104 ± 22% W’) and W’ were not significantly different (P>0.05) but lower than W>CP for THREE (119 ± 17% W’, P<0.05). For both THREE (r = 0.71, P<0.01) and TEN (r = 0.64, P<0.01), a significant bivariate correlation was found between W’ and t lim.Conclusion W>CP and t lim can be greater than predicted by the P-t lim relationship when a decrement in the work rate of high-volatility is applied. Exercise tolerance can be enhanced through a change in work rate within the severe intensity domain. W>CP is not constant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.