The research work was started on the preliminary knowledge that the risk of secondary salinization is high in the hobby gardens around Karcag as the water of the aquifers used for irrigation is saline, nevertheless irrigation in the drought periods is essential for vegetable production. A complex experiment was set up in 12 simple drainage lysimeters at the lysimeter station of the Research Institute of Karcag in 2012 in order to simulate the conditions of irrigation characteristic in the region with the goal of finding a solution to mitigate the harmful effects by means of optimization of irrigation. In 2017–2018 three approaches were applied for the scientific establishment of the problem studying the effect of different irrigation frequencies, different irrigation water qualities, and soil conditioning on the moisture content and the salt profile of the soil. The soil conditioner (Neosol) applied was found to have a positive effect on the water and salt regime of the soil, partly by creating a more favourable vertical distribution of the soil water, and partly preserving more moisture in the soil.
CO2 emission from soils is one of the most important elements of the global carbon cycle, thus it has crucial rule in climate change. Each soil cultivation operation intervenes in the microbiological life of the soil, hence tillage is a factor through that the processes taking place in soil can be controlled. During the last decades, the organic material content of agricultural soils decreased to the half due to the intensive management resulting in the degradation of natural soil fertility. While intensive, plough-based tillage can cause soil degradation and erosion, the physical, chemical and biological status of the soil can be significantly improved through the application of conservation tillage methods. The results of long-term experiments prove that soil protective tillage enhances the enrichment of organic matter in the top layer of the soil. In order to reveal the role of tillage systems in CO2 emission from the soil, regular measurements were carried out in the plots with conventional and reduced tillage of the soil cultivation experiment of Research Institute of Karcag. Anagas CD 98 and Gas Alert Micro 5w infrared gas analysers were used to measure CO2-concentrations, and a specially developed method (consisting of a frame and a bowl) was applied to delimitate the measuring area. Most of the measurements were done on stubbles after harvest in order to exclude root respiration. The weather conditions of the examined 10 years were very changeable providing a good chance to compare them to each other. We found the tillage operations resulting in higher emission values in both tillage systems. On stubbles higher and more even emission was characteristic to reduced tillage due to the lower degree of soil disturbance and higher soil moisture content.
This research has the general goal to meet the customization of agriculture in small scale farming. We are developing a technique using micro doses of soil conditioners and organic material applied in the root zone of vegetable crops. We expected to change the physical and chemical properties of the affected soil, which has been irrigated with salty water. Two different soil conditioners were tested. A lysimeter experiment including 8 simple drainage lysimeters was set up in the Research Institute of Karcag IAREF University of Debrecen in 2017. The main goal was to study the effect of different soil conditioners on the soil endangered by secondary salinization induced by irrigation with saline water. In order to compare the difference between the treatments, we collected soil samples, water samples, and determined the yields. Chili pepper (Capsicum annuum) was used as an indicator crop during one specific agricultural season. The technique called micro soil conditioning is rational because several reasons. The roles of the technique are various, for example it can serve as a source of carbon or a container for soil amendments and can minimize evaporation. We found this technique not to interfere with the chemical reaction or the interaction with the plants. However, the micro doses of soil amendments had the role to minimize the risk of soil degradation and do not significantly influence soil respiration. In addition, by improving soil properties, soil conditioning increases the leaching of the excess of salts from the root zone. In fact, this technique can decrease the cost of the inputs and improves the production of vegetables, and at the same time mitigates the effect of secondary salinization.
There are extended agricultural areas in the world that can be utilized only with irrigation for crop production. Improper irrigation may induce unfavourable processes in the soil (e.g. secondary salinization). To investigate this problem existing in Hungary as well, 12 simple drainage lysimeterswhich are useful equipment for the investigation of the water and salt balance of the soilwere used in an irrigation experiment in the Research Institute of Karcag. The basic goal was to investigate the possibility of the production of a salt-sensitive crop (green bean) in areas with unfavourable agro-ecological conditions. 6 lysimeters were irrigated with deionized water, while the other 6 with saline water of 1,600 mg/l salt content. We also used a soil conditioner (Neosol) during the experiment. Analysing the effect of the irrigation quality on the plant height of green beans, it can be established that the plants irrigated with deionized water were averagely 5.3 cm taller than the plants irrigated with saline water. Similar tendencies were characteristic of the average biomass (deionized: 93.5, saline: 62.5 g), the average root mass (deionized: 9.5 g, saline: 8.2 g), the number of pods (deionized: 17.1, saline: 11.9), and the pod yield (deionized: 137.9 g, saline: 85.9 g) values. However, all these values can be improved by soil conditioning combined with the optimization of irrigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.