Coupling the high specificity of the immunoanalytical reaction with the high sensitivity of optical waveguide light-mode spectroscopy (OWLS) detection gives the possibility to develop immunosensors with in most cases a definitely lower detection limit than traditionally used immunoassays. Measurements were performed on the sensitized surface of optical waveguide grating coupler sensors (2400 lines/mm grating). The OWLS technique is based on the precise measurement of the resonance angle of a polarized laser light (632.8 nm), diffracted by a grating and incoupled into a thin waveguide. The effective refractive index, determined from the resonance incoupling angle detected at high accuracy, allows determination of layer thickness and coverage (or mass) of the adsorbed or bound material with ultrahigh sensitivity. OWLS immunosensors were developed as label-free immunosensors with an amino group modified SiO(2)-TiO(2) sensor surface on which the immunoreactants could be anchored. One of the components of the antibody-antigen complex was chemically bound on the sensor surface, allowing noncompetitive or competitive detection of the analytes. To illustrate that the resulting immunosensors are suitable for the determination of small and large molecular weight analytes, OWLS sensor formats were applied for quantitative detection of a herbicide active ingredient trifluralin, a Fusarium mycotoxin zearalenone, and an egg yolk protein of key importance in endocrine regulation, vitellogenin.
Mycotoxin contamination of cereals used for feed can cause intoxication, especially in farm animals; therefore, efficient analytical tools for the qualitative and quantitative analysis of toxic fungal metabolites in feed are required. Current trends in food/feed analysis are focusing on the application of biosensor technologies that offer fast and highly selective and sensitive detection with minimal sample treatment and reagents required. The article presents an overview of the recent progress of the development of biosensors for deoxynivalenol and zearalenone determination in cereals and feed. Novel biosensitive materials and highly sensitive detection methods applied for the sensors and the application of these sensors to food/feed products, the limit, and the time of detection are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.