We report the synthesis, characterization and evaluation of the thermoelectric properties of Cu 3 SbSe 3 with a view to explore its utility as an useful thermoelectric material due to its intrinsically low thermal conductivity. Cu 3 SbSe 3 was synthesized employing a solid state reaction process followed by spark plasma sintering, and the synthesized material was extensively characterized for its phase, composition and structure, which suggested formation of a single-phase. The measured electrical transport properties of Cu 3 SbSe 3 indicated p-type conduction in this material. The electrical transport behavior agrees well with that predicted theoretically using first-principle density-functional theory calculations, employing generalized gradient approximation. The measured thermal conductivity was found to be 0.26 W m À1 K À1 at 550 K, which is the lowest reported thus far for Cu 3 SbSe 3 and is among the lowest for state-of-the-art thermoelectric materials. Despite its ultralow thermal conductivity coupled with a moderate Seebeck coefficient, the calculated value of its thermoelectric figure-of-merit was found to be exceptionally low (<0.1), which was primarily attributed to its low electrical conductivity. Nevertheless, it is argued that Cu 3 SbSe 3 , due its environmentally-friendly constituent elements, ultralow thermal conductivity and moderate thermopower, could be a potentially useful thermoelectric material as the power factor can be favorably tailored by tuning the carrier concentration using suitable metallic dopants.
We report the synthesis of thermoelectric compounds, Cu3SbSe3 and Cu3SbSe4, employing the conventional fusion method followed by spark plasma sintering. Their thermoelectric properties indicated that despite its higher thermal conductivity, Cu3SbSe4 exhibited a much larger value of thermoelectric figure-of-merit as compared to Cu3SbSe3, which is primarily due to its higher electrical conductivity. The thermoelectric compatibility factor of Cu3SbSe4 was found to be ∼1.2 as compared to 0.2 V−1 for Cu3SbSe3 at 550 K. The results of the mechanical properties of these two compounds indicated that their microhardness and fracture toughness values were far superior to the other competing state-of-the-art thermoelectric materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.