In today's competitive world, organizations take advantage of widely-available data to promote their products and increase their revenue. This is achieved by identifying the reader's preference for news genre and patterns in news spread network. Spreading news over the internet seems to be a continuous process which eventually triggers the evolution of temporal networks. This temporal network comprises of nodes and edges, where node corresponds to published articles and similar articles are connected via edges. The main focus of this article is to reconstruct a susceptible-infected (SI) diffusion model to discover the spreading pattern of news articles for virality detection. For experimental analysis, a dataset of news articles from four domains (business, technology, entertainment, and health) is considered and the articles' rate of diffusion is inferred and compared. This will help to build a recommendation system, i.e. recommending a particular domain for advertisement and marketing. Hence, it will assist to build strategies for effective product endorsement for sustainable profitability.
In today's competitive world, organizations take advantage of widely-available data to promote their products and increase their revenue. This is achieved by identifying the reader's preference for news genre and patterns in news spread network. Spreading news over the internet seems to be a continuous process which eventually triggers the evolution of temporal networks. This temporal network comprises of nodes and edges, where node corresponds to published articles and similar articles are connected via edges. The main focus of this article is to reconstruct a susceptible-infected (SI) diffusion model to discover the spreading pattern of news articles for virality detection. For experimental analysis, a dataset of news articles from four domains (business, technology, entertainment, and health) is considered and the articles' rate of diffusion is inferred and compared. This will help to build a recommendation system, i.e. recommending a particular domain for advertisement and marketing. Hence, it will assist to build strategies for effective product endorsement for sustainable profitability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.