Nowadays, the space operations environment have to face with space safety problems because of the growing of space debris in resident of space objects (RSOs) that can cause a catastrophic collision. In order to prevent debris-related risks in operational orbit, ground-based passive optical telescope network were used as a primary equipment for space debris observation due to the lowest maintenance costs. Furthermore, in technical, a precise tracking (position and velocity) of space objects can be beneficial towards not only orbit determination but also estimation spacecraft collision probability especially, in Low-Earth Orbit regime. National Astronomical Research Institute of Thailand (NARIT) has long experience operate in an observatory to perform both passive & active optical instruments for astrophysics and space sciences missions. In this research, based on Thai National Space objects Observation (TNSO) project, we re-establish the basic understanding of satellite tracking, optical subsystem integration and demonstration a framework so as to enhance the capability of telescope servo control subsystem. We describe the specific solutions adopted for continuous tracking mode and the results obtained during the commissioning of an alt-azimuth mounting equipped with 0.7 meter optical aperture telescope. The observation system can be performed with negligible as continuous tracking error. This contribution will present some of the experimental results and plans for further measurement campaigns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.