We report on the search for new eclipsing white dwarf plus main-sequence (WDMS) binaries in the light curves of the Catalina surveys. We use a colour selected list of almost 2000 candidate WDMS systems from the Sloan Digital Sky Survey, specifically designed to identify WDMS systems with cool white dwarfs and/or early M type main-sequence stars. We identify a total of 17 eclipsing systems, 14 of which are new discoveries. We also find 3 candidate eclipsing systems, 2 main-sequence eclipsing binaries and 22 non-eclipsing close binaries. Our newly discovered systems generally have optical fluxes dominated by the main-sequence components, which have earlier spectral types than the majority of previously discovered eclipsing systems. We find a large number of ellipsoidally variable binaries with similar periods, near 4 hours, and spectral types M2-3, which are very close to Roche-lobe filling. We also find that the fraction of eclipsing systems is lower than found in previous studies and likely reflects a lower close binary fraction among WDMS binaries with early M-type mainsequence stars due to their enhanced angular momentum loss compared to fully convective late M type stars, hence causing them to become cataclysmic variables quicker and disappear from the WDMS sample. Our systems bring the total number of known detached, eclipsing WDMS binaries to 71.
Nowadays, the space operations environment have to face with space safety problems because of the growing of space debris in resident of space objects (RSOs) that can cause a catastrophic collision. In order to prevent debris-related risks in operational orbit, ground-based passive optical telescope network were used as a primary equipment for space debris observation due to the lowest maintenance costs. Furthermore, in technical, a precise tracking (position and velocity) of space objects can be beneficial towards not only orbit determination but also estimation spacecraft collision probability especially, in Low-Earth Orbit regime. National Astronomical Research Institute of Thailand (NARIT) has long experience operate in an observatory to perform both passive & active optical instruments for astrophysics and space sciences missions. In this research, based on Thai National Space objects Observation (TNSO) project, we re-establish the basic understanding of satellite tracking, optical subsystem integration and demonstration a framework so as to enhance the capability of telescope servo control subsystem. We describe the specific solutions adopted for continuous tracking mode and the results obtained during the commissioning of an alt-azimuth mounting equipped with 0.7 meter optical aperture telescope. The observation system can be performed with negligible as continuous tracking error. This contribution will present some of the experimental results and plans for further measurement campaigns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.