The thermally dimorphic fungus Penicillium marneffei is a causative agent of penicilliosis marneffei, a disease considered to be an acquired immune deficiency syndrome (AIDS)-defining illness in Southeast Asia and southern China. We have developed an inhibition enzyme-linked immunosorbent assay (inh-ELISA) incorporating the yeast phase specific mannoprotein-binding monoclonal antibody 4D1 for the detection of P. marneffei infection. In our sample set, the test detected antigenemia in all 45 (100 %) patients with P. marneffei, with a mean antigen concentration of 4.32 μg/ml. No cross-reactivity in this assay was found using serum from 44 additional patients with other fungal infections, such as Aspergillus fumigatus, Cryptococcus neoformans, and Candida albicans, as well as 44 patients with bacterial infections, such as Mycobacterium tuberculosis and Streptococcus suis. Additionally, no reactivity occurred using serum from 31 human immunodeficiency virus (HIV)-infected patients without a history of fungal infections and 113 healthy controls residing in endemic areas. To investigate the potential of the inh-ELISA for disease monitoring, we followed the reduction in antigenemia in six patients who clinically responded to itraconazole and P. marneffei was no longer isolated from their blood or tissues. In contrast, we correlated increased concentrations of antigenemia in patients with relapsed P. marneffei infection with the progression of their clinical symptoms and the isolation of P. marneffei from their clinical specimens. In summary, the P. marneffei inh-ELISA is a promising new assay for the rapid diagnosis of P. marneffei, as well as a tool for evaluating clinical response and clearance of the fungus during treatment.
Talaromycosis (Penicilliosis) is an opportunistic mycosis caused by the thermally dimorphic fungus Talaromyces (Penicillium) marneffei. Similar to other major causes of systemic mycoses, the extent of disease and outcomes are the results of complex interactions between this opportunistic human pathogen and a host’s immune response. This review will highlight the current knowledge regarding the dynamic interaction between T. marneffei and mammalian hosts, particularly highlighting important aspects of virulence factors, intracellular lifestyle and the mechanisms of immune defense as well as the strategies of the pathogen for manipulating and evading host immune cells.
Talaromyces (Penicillium) marneffei is a thermally dimorphic fungus that can cause opportunistic systemic mycoses in patients infected with the human immunodeficiency virus (HIV). It has also been reported among patients with other causes of immunodeficiency, such as systemic lupus erythematosus, cancer, organ transplanted patients receiving immunosuppressive drug and adult onset immunodeficiency syndromes. Recent studies indicate that the clinical manifestations, laboratory findings and treatment strategies of talaromycosis (penicilliosis) marneffei are different between patients with and without HIV infection. Therefore early and accurate diagnosis of talaromycosis marneffei is crucial to the proper management and treatment. Since current diagnostic methods are currently inadequate, the aim of this study was to develop an immunochromatographic test (ICT) for the detection of T. marneffei yeast antigens in urine samples. The highly T. marneffei-specific monoclonal antibody 4D1 (MAb 4D1) conjugated with gold colloid at pH 6.5 was used as signal generator. The nitrocellulose membrane was lined with T. marneffei cytoplasmic yeast antigen (TM CYA) to serve as the test line, and rabbit anti-mouse IgG was the control line. Subjecting the assembled test strip to urine samples containing T. marneffei antigen produced a visible result within 20 minutes. The sensitivity limit of the assay was 3.125μg/ml of TM CYA. The ICT was used to test urine samples from 66 patients with blood culture confirmed talaromycosis marneffei, 42 patients with other fungal or bacterial infections, and 70 normal healthy individuals from endemic area of T. marneffei. The test exhibited sensitivity, specificity and accuracy of 87.87%, 100% and 95.5%, respectively. This rapid, user-friendly test holds great promise for the serodiagnosis of T. marneffei infection.
Snakebite envenomation is a neglected tropical disease of high mortality and morbidity largely due to insufficient supply of effective and affordable antivenoms. Snake antivenoms are mostly effective against the venoms used in their production. It is thus crucial that effective and affordable antivenom(s) with wide para-specificity, capable of neutralizing the venoms of a large number of snakes, be produced. Here we studied the pan-specific antiserum prepared previously by a novel immunization strategy involving the exposure of horses to a ‘diverse toxin repertoire’ consisting of 12 neurotoxic Asian snake toxin fractions/ venoms from six species. This antiserum was previously shown to exhibit wide para-specificity by neutralizing 11 homologous and 16 heterologous venoms from Asia and Africa. We now show that the antiserum can neutralize 9 out of 10 additional neurotoxic venoms. Altogether, 36 snake venoms belonging to 10 genera from 4 continents were neutralized by the antiserum. Toxin profiles previously generated using proteomic techniques of these 36 venoms identified α-neurotoxins, β-neurotoxins, and cytotoxins as predominant toxins presumably neutralized by the antiserum. The bases for the wide para-specificity of the antiserum are discussed. These findings indicate that it is feasible to generate antivenoms of wide para-specificity against elapid neurotoxic venoms from different regions in the world and raises the possibility of a universal neurotoxic antivenom. This should reduce the mortality resulting from neurotoxic snakebite envenomation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.