This study aimed to present the experimental results of two types of turbines and attachments used in a hydro-compact generator. Two Horizontal Spiral Turbines (HSTs) with blade angles of eighteen and twenty-one degrees, respectively, and a three-blade turbine were tested and experimented in a laboratory at five levels of water flow rate ranging from 1–2 m/s. After the efficiency and torque values of each turbine were identified, they were installed in two 200 W power generator systems: (1) with a “diffuser” attachment; and (2) with an “in-line+diffuser+nozzle chamber” attachment, and tested in a local irrigation canal with 1.2 m/s. The results from the laboratory indicated that the HST with a twenty-one degree blade angle had 38.10% efficiency at the water flow rate of 2 m/s. It could reach 120.0 rpm and produced 212 Nm of torque. The results from the field experiment revealed that the combination of the power generator with the twenty-one degree blade angle HST and the in-line + diffuser + nozzle chamber attachment was the most efficient, with 284 Nm of torque at 108 rpm and could generate 67.63 W of electrical power. When the water flow rate of the irrigation canal reached 1.5 m/s, it could reach 114 rpm and generate 129.2 W. This hydro-compact generator set is suitable for irrigation canals with a water flow rate ranging from 1–1.5 m/s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.