In this paper, we propose a lossless electrocardiogram (ECG) compression method using a prediction error-based adaptive linear prediction technique. This method combines the adaptive linear prediction, which minimizes the prediction error in the ECG signal prediction, and the modified Golomb–Rice coding, which encodes the prediction error to the binary code as the compressed data. We used the PTB Diagnostic ECG database, the European ST-T database, and the MIT-BIH Arrhythmia database for the evaluation and achieved the average compression ratios for single-lead ECG signals of 3.16, 3.75, and 3.52, respectively, despite different signal acquisition setup in each database. As the prediction order is very crucial for this particular problem, we also investigate the validity of the popular linear prediction coefficients that are generally used in ECG compression by determining the prediction coefficients from the three databases using the autocorrelation method. The findings are in agreement with the previous works in that the second-order linear prediction is suitable for the ECG compression application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.