In this paper, we present a proxy based system MOWSER to support web browsing from mobile clients over wireless networks. Mowser is a proxy agent between the mobile host and the web server, which performs active transcoding of data on both upstream and downstream trafc to present web information to the mobile user according to the QoS parameters set by the user. Active transcoding is de ned a s m o difying the HTTP stream in situ, and it is entirely transparent to the user. Further, our system does not pose any additional requirements on the mobile user. This is an improvement over other proxy based systems, which only transcode images on the downstream and are mostly not con gurable. While developed for mobile users, such a system can actually be useful in any low bandwidth scenario.
Finding the correct boundary in noisy images is still a difficult task. This paper introduces a new edge following technique for boundary detection in noisy images. Utilization of the proposed technique is exhibited via its application to various types of medical images. Our proposed technique can detect the boundaries of objects in noisy images using the information from the intensity gradient via the vector image model and the texture gradient via the edge map. The performance and robustness of the technique have been tested to segment objects in synthetic noisy images and medical images including prostates in ultrasound images, left ventricles in cardiac magnetic resonance (MR) images, aortas in cardiovascular MR images, and knee joints in computerized tomography images. We compare the proposed segmentation technique with the active contour models (ACM), geodesic active contour models, active contours without edges, gradient vector flow snake models, and ACMs based on vector field convolution, by using the skilled doctors' opinions as the ground truths. The results show that our technique performs very well and yields better performance than the classical contour models. The proposed method is robust and applicable on various kinds of noisy images without prior knowledge of noise properties.
When burn injury occurs, the most important step is to provide treatment to the injury immediately by identifying degree of the burn which can only be diagnosed by specialists. However, specialists for burn trauma are still inadequate for some local hospitals. Hence, the invention of an automatic system that is able to help evaluating the burn would be extremely beneficial to those hospitals. The aim of this work is to develop an automatic system with the ability of providing the first assessment to burn injury from burn color images. The method used in this work can be divided into 2 parts, i.e., burn image segmentation and degree of burn identification. Burn image segmentation employs the Cr-transformation, Luvtransformation and fuzzy c-means clustering technique to separate the burn wound area from healthy skin and then mathematical morphology is applied to reduce segmentation errors. The segmentation algorithm performance is evaluated by the positive predictive value (PPV) and the sensitivity (S). Burn degree identification uses h-transformation and texture analysis to extract feature vectors and the support vector machine (SVM) is applied to identify the degree of burn. The classification results are compared with that of Bayes and K-nearest neighbor classifiers. The experimental results show that our proposed segmentation algorithm yields good results for the burn color images. The PPV and S are about 0.92 and 0.84, respectively. Degree of burn identification experiments show that SVM yields the best results of 89.29 % correct classification on the validation sets of the 4-fold cross validation. SVM also yields 75.33 % correct classification on the blind test experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.