Given the volatile nature of global financial markets, managing as well as predicting financial risk plays an increasingly important role in banking and finance. The Value at Risk (VaR) measure has emerged as the most prominent measure of downside market risk. It is measured as the alpha quantile of the profit and loss distribution. Recently a number of distributions have been proposed to model VaR: these include the extreme value theory distributions (EVT), Generalized Error Distribution (GED), Student’s t, and normal distribution. Furthermore, asymmetric as well as symmetric volatility models are combined with these distributions for out-sample VaR forecasts. This paper assesses the role of the distribution assumption and volatility specification in the accuracy of VaR estimates using daily closing prices of the Johannesburg Stock Exchange All Share Index (JSE ALSI). It is found that Student’s t distribution combined with asymmetric volatility models produces VaR estimates in out-sample periods that outperform those from models stemming from normal, EVT/symmetric volatility specification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.