The human interferon-inducible protein IFI16 is an important antiviral factor that binds nuclear viral DNA and promotes antiviral responses. Here, we define IFI16 dynamics in space and time and its distinct functions from the DNA sensor cyclic dinucleotide GMP-AMP synthase (cGAS). Live-cell imaging reveals a multiphasic IFI16 redistribution, first to viral entry sites at the nuclear periphery and then to nucleoplasmic puncta upon herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV) infections. Optogenetics and live-cell microscopy establish the IFI16 pyrin domain as required for nuclear periphery localization and oligomerization. Furthermore, using proteomics, we define the signature protein interactions of the IFI16 pyrin and HIN200 domains and demonstrate the necessity of pyrin for IFI16 interactions with antiviral proteins PML and cGAS. We probe signaling pathways engaged by IFI16, cGAS, and PML using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated knockouts in primary fibroblasts. While IFI16 induces cytokines, only cGAS activates STING/TBK-1/IRF3 and apoptotic responses upon HSV-1 and HCMV infections. cGAS-dependent apoptosis upon DNA stimulation requires both the enzymatic production of cyclic dinucleotides and STING. We show that IFI16, not cGAS or PML, represses HSV-1 gene expression, reducing virus titers. This indicates that regulation of viral gene expression may function as a greater barrier to viral replication than the induction of antiviral cytokines. Altogether, our findings establish coordinated and distinct antiviral functions for IFI16 and cGAS against herpesviruses.
The interferon-inducible protein IFI16 has emerged as a critical antiviral factor and sensor of viral DNA. IFI16 binds nuclear viral DNA, triggering expression of antiviral cytokines during infection with herpesviruses. The knowledge of the mechanisms and protein interactions through which IFI16 exerts its antiviral functions remains limited. Here, we provide the first characterization of endogenous IFI16 interactions following infection with the prominent human pathogen herpes simplex virus 1 (HSV-1). By integrating proteomics and virology approaches, we identified and validated IFI16 interactions with both viral and host proteins that are involved in HSV-1 immunosuppressive mechanisms and host antiviral responses. We discover that during early HSV-1 infection, IFI16 is recruited to sub-nuclear puncta and subsequently targeted for degradation. We observed that the HSV-1 E3 ubiquitin ligase ICP0 is necessary, but not sufficient, for the proteasom e-mediated degradation of IFI16 following infection. We substantiate that this ICP0-mediated mechanism suppresses IFI16-dependent immune responses. Utilizing an HSV-1 strain that lacks ICP0 ubiquitin ligase activity provided a system for studying IFI16-dependent cytokine responses to HSV-1, as IFI16 levels were maintained throughout infection. We next defined temporal IFI16 interactions during this immune signaling response. We discovered and validated interactions with the viral protein ICP8 and cellular ND10 nuclear body components, sites at which HSV-1 DNA is present during infection. These interactions may be critical for IFI16 to bind to nuclear viral DNA. Altogether, our results provide critical insights into both viral inhibition of IFI16 and interactions that can contribute to IFI16 antiviral functions. Molecular & Cellular Proteomics
The integration of proteomic methods to virology has facilitated a significant breadth of biological insight into mechanisms of virus replication, antiviral host responses and viral subversion of host defenses. Throughout the course of infection, these cellular mechanisms rely heavily on the formation of temporally and spatially regulated virus–host protein–protein interactions. Reviewed here are proteomic-based approaches that have been used to characterize this dynamic virus–host interplay. Specifically discussed are the contribution of integrative mass spectrometry, antibody-based affinity purification of protein complexes, cross-linking and protein array techniques for elucidating complex networks of virus–host protein associations during infection with a diverse range of RNA and DNA viruses. The benefits and limitations of applying proteomic methods to virology are explored, and the contribution of these approaches to important biological discoveries and to inspiring new tractable avenues for the design of antiviral therapeutics is highlighted.
Detecting pathogenic DNA by intracellular receptors termed "sensors" is critical toward galvanizing host immune responses and eliminating microbial infections. Emerging evidence has challenged the dogma that sensing of viral DNA occurs exclusively in sub-cellular compartments normally devoid of cellular DNA. The interferon-inducible protein IFI16 was shown to bind nuclear viral DNA and initiate immune signaling, culminating in antiviral cytokine secretion. Here, we review the newly characterized nucleus-originating immune signaling pathways, their links to other crucial host defenses, and unique mechanisms by which viruses suppress their functions. We frame these findings in the context of human pathologies associated with nuclear replicating DNA viruses.Existing under the constant risk of invasion by pathogenic microorganisms, mammalian cells employ an array of constitutively expressed, germ-line-encoded receptors to survey the intra-and extracellular milieu for pathogen-or damage-associated molecules. Binding of these cellular receptors to their specific ligands evokes intracellular immune signaling cascades that culminate in the robust expression and secretion of antiviral cytokines, such as type I interferons (IFNs). Upon their release from the cell, these induced signaling factors operate in both an autocrine and a paracrine manner, inciting nearby cells to assume antiviral transcriptional programs. Cytokines further stimulate mammalian innate and adaptive immune responses, including the recruitment of antigen-presenting or cytotoxic leukocytes and the production of microbe-specific antibodies. Altogether, these cytokine-coordinated events promote the elimination of the invading pathogen. Thus, the molecular mechanisms mediating the recognition of and response to microbial molecular signatures are critically important.The DNA genomes of DNA viruses, a class of prevalent human pathogens, serve as one such immunogenic molecular signature. For preventing spurious auto-activation with cellular "self" DNA, the intracellular surveillance of viral DNA was thought to occur exclusively in cytosolic and endosomal compartments. However, this model fails to reconcile the fact that nearly all DNA viruses deposit and replicate their DNA genomes exclusively within host nuclei. As part of a shifting paradigm, recent studies have established the existence of cellular DNA sensors that detect viral DNA within the nucleus to trigger immune signaling. Here, we review the recent discoveries and ongoing challenges within the emerging field of nuclear DNA sensing.
The formation of multimerized protein assemblies has emerged as a core component of immune signal amplification, yet the biochemical basis of this phenomenon remains unclear for many mammalian proteins within host defense pathways. The interferon-inducible protein 16 (IFI16) is a viral DNA sensor that oligomerizes upon binding to nuclear viral DNA and induces downstream antiviral responses. Here, we identify the pyrin domain (PYD) residues that mediate IFI16 oligomerization in a charge-dependent manner. Based on structure modeling, these residues are predicted to be surface exposed within distinct α-helices. By generating oligomerization-deficient mutants, we demonstrate that IFI16 homotypic clustering is necessary for its assembly onto parental viral genomes at the nuclear periphery upon herpes simplex virus 1 (HSV-1) infection. Preventing oligomerization severely hampered the capacity of IFI16 to induce antiviral cytokine expression, suppress viral protein levels, and restrict viral progeny production. Restoring oligomerization via residue-specific charge mimics partially rescued IFI16 antiviral roles. We show that pyrin domains from PYHIN proteins are functionally interchangeable, facilitating cooperative assembly with the IFI16 HINs, highlighting an inherent role for pyrin domains in antiviral response. Using immunoaffinity purification and targeted mass spectrometry, we establish that oligomerization promotes IFI16 interactions with proteins involved in transcriptional regulation, including PAF1C, UBTF, and ND10 bodies. We further discover PAF1C as an HSV-1 restriction factor. Altogether, our study uncovers intrinsic properties that govern IFI16 oligomerization, which serves as a signal amplification platform to activate innate immune responses and to recruit transcriptional regulatory proteins that suppress HSV-1 replication. IMPORTANCE The ability of mammalian cells to detect the genomes of nuclear-replicating viruses via cellular DNA sensors is fundamental to innate immunity. Recently, mounting evidence is supporting the universal role of polymerization in these host defense factors as a signal amplification strategy. Yet, what has remained unclear are the intrinsic properties that govern their immune signal transmission. Here, we uncover the biochemical basis for oligomerization of the nuclear DNA sensor, IFI16. Upon infection with herpes simplex virus 1 (HSV-1) in human fibroblasts, we characterize the contribution of IFI16 oligomerization to downstream protein interactions and antiviral functions, including cytokine induction and suppression of HSV-1 replication. Until now, the global characterization of oligomerization-dependent protein interactions for an immune receptor has never been explored. Our integrative quantitative proteomics, molecular CRISPR/Cas9-based assays, mutational analyses, and confocal microscopy shed light on the dynamics of immune signaling cascades activated against pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.